-
- Quan Liu, Li Ma, Shou-Zen Fan, Maysam F Abbod, Qingsong Ai, Kun Chen, and Jiann-Shing Shieh.
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China.
- Biomed Res Int. 2018 Jan 1; 2018: 4939480.
AbstractElectroencephalogram (EEG) signal analysis is commonly employed to extract information on the brain dynamics. It mainly targets brain status and communication, thus providing potential to trace differences in the brain's activity under different anesthetics. In this article, two kinds of gamma-amino butyric acid (type A -GABAA) dependent anesthetic agents, propofol and desflurane (28 and 23 patients), were studied and compared with respect to EEG spectrogram dynamics. Hilbert-Huang Transform (HHT) was employed to compute the time varying spectrum for different anesthetic levels in comparison with Fourier based method. Results show that the HHT method generates consistent band power (slow and alpha) dominance pattern as Fourier method does, but exhibits higher concentrated power distribution within each frequency band than the Fourier method during both drugs induced unconsciousness. HHT also finds slow and theta bands peak frequency with better convergence by standard deviation (propofol-slow: 0.46 to 0.24; theta: 1.42 to 0.79; desflurane-slow: 0.30 to 0.25; theta: 1.42 to 0.98) and a shift to relatively lower values for alpha band (propofol: 9.94 Hz to 10.33 Hz, desflurane 8.44 Hz to 8.84 Hz) than Fourier one. For different stage comparisons, although HHT shows significant alpha power increases during unconsciousness stage as the Fourier did previously, it finds no significant high frequency (low gamma) band power difference in propofol whereas it does in desflurane. In addition, when comparing the HHT results within two groups during unconsciousness, high beta band power in propofol is significantly larger than that of desflurane while delta band power behaves oppositely. In conclusion, this study convincingly shows that EEG analyzed here considerably differs between the HHT and Fourier method.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.