-
J. Neurosci. Methods · Jun 2016
CommentMachine learning on Parkinson's disease? Let's translate into clinical practice.
- Antonio Cerasa.
- IBFM, National Research Council, Viale Europa, Catanzaro, 88100, Italy. Electronic address: a.cerasa@unicz.it.
- J. Neurosci. Methods. 2016 Jun 15; 266: 161-2.
AbstractMachine learning techniques represent the third-generation of clinical neuroimaging studies where the principal interest is not related to describe anatomical changes of a neurological disorder, but to evaluate if a multivariate approach may use these abnormalities to predict the correct classification of previously unseen clinical cohort. In the next few years, Machine learning will revolutionize clinical practice of Parkinson's disease, but enthusiasm should be turned down before removing some important barriers.Copyright © 2015 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.