• Haematologica · Nov 2016

    Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies new mutations.

    • Carme Camps, Nayia Petousi, Celeste Bento, Holger Cario, Richard R Copley, Mary Frances McMullin, Richard van Wijk, Peter J Ratcliffe, Peter A Robbins, Jenny C Taylor, and WGS500 Consortium.
    • National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Oxford, UK.
    • Haematologica. 2016 Nov 1; 101 (11): 1306-1318.

    AbstractErythrocytosis is a rare disorder characterized by increased red cell mass and elevated hemoglobin concentration and hematocrit. Several genetic variants have been identified as causes for erythrocytosis in genes belonging to different pathways including oxygen sensing, erythropoiesis and oxygen transport. However, despite clinical investigation and screening for these mutations, the cause of disease cannot be found in a considerable number of patients, who are classified as having idiopathic erythrocytosis. In this study, we developed a targeted next-generation sequencing panel encompassing the exonic regions of 21 genes from relevant pathways (~79 Kb) and sequenced 125 patients with idiopathic erythrocytosis. The panel effectively screened 97% of coding regions of these genes, with an average coverage of 450×. It identified 51 different rare variants, all leading to alterations of protein sequence, with 57 out of 125 cases (45.6%) having at least one of these variants. Ten of these were known erythrocytosis-causing variants, which had been missed following existing diagnostic algorithms. Twenty-two were novel variants in erythrocytosis-associated genes (EGLN1, EPAS1, VHL, BPGM, JAK2, SH2B3) and in novel genes included in the panel (e.g. EPO, EGLN2, HIF3A, OS9), some with a high likelihood of functionality, for which future segregation, functional and replication studies will be useful to provide further evidence for causality. The rest were classified as polymorphisms. Overall, these results demonstrate the benefits of using a gene panel rather than existing methods in which focused genetic screening is performed depending on biochemical measurements: the gene panel improves diagnostic accuracy and provides the opportunity for discovery of novel variants.Copyright© Ferrata Storti Foundation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…