• Int. J. Infect. Dis. · Sep 2020

    Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020).

    • Hamid Reza Pourghasemi, Soheila Pouyan, Bahram Heidari, Zakariya Farajzadeh, Seyed Rashid Fallah Shamsi, Sedigheh Babaei, Rasoul Khosravi, Mohammad Etemadi, Gholamabbas Ghanbarian, Ahmad Farhadi, Roja Safaeian, Zahra Heidari, Mohammad Hassan Tarazkar, John P Tiefenbacher, Amir Azmi, and Faezeh Sadeghian.
    • Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran. Electronic address: hamidreza.pourghasemi@yahoo.com.
    • Int. J. Infect. Dis. 2020 Sep 1; 98: 90-108.

    ObjectivesCoronavirus disease 2019 (COVID-19) represents a major pandemic threat that has spread to more than 212 countries with more than 432,902 recorded deaths and 7,898,442 confirmed cases worldwide so far (on June 14, 2020). It is crucial to investigate the spatial drivers to prevent and control the epidemic of COVID-19.MethodsThis is the first comprehensive study of COVID-19 in Iran; and it carries out spatial modeling, risk mapping, change detection, and outbreak trend analysis of the disease spread. Four main steps were taken: comparison of Iranian coronavirus data with the global trends, prediction of mortality trends using regression modeling, spatial modeling, risk mapping, and change detection using the random forest (RF) machine learning technique (MLT), and validation of the modeled risk map.ResultsThe results show that from February 19 to June 14, 2020, the average growth rates (GR) of COVID-19 deaths and the total number of COVID-19 cases in Iran were 1.08 and 1.10, respectively. Based on the World Health Organisation (WHO) data, Iran's fatality rate (deaths/0.1M pop) is 10.53. Other countries' fatality rates were, for comparison, Belgium - 83.32, UK - 61.39, Spain - 58.04, Italy - 56.73, Sweden - 48.28, France - 45.04, USA - 35.52, Canada - 21.49, Brazil - 20.10, Peru - 19.70, Chile - 16.20, Mexico- 12.80, and Germany - 10.58. The fatality rate for China is 0.32 (deaths/0.1M pop). Over time, the heatmap of the infected areas identified two critical time intervals for the COVID-19 outbreak in Iran. The provinces were classified in terms of disease and death rates into a large primary group and three provinces that had critical outbreaks were separate from the others. The heatmap of countries of the world shows that China and Italy were distinguished from other countries in terms of nine viral infection-related parameters. The regression models for death cases showed an increasing trend but with some evidence of turning. A polynomial relationship was identified between the coronavirus infection rate and the province population density. Also, a third-degree polynomial regression model for deaths showed an increasing trend recently, indicating that subsequent measures taken to cope with the outbreak have been insufficient and ineffective. The general trend of deaths in Iran is similar to the world's, but Iran's shows lower volatility. Change detection of COVID-19 risk maps with a random forest model for the period from March 11 to March 18 showed an increasing trend of COVID-19 in Iran's provinces. It is worth noting that using the LASSO MLT to evaluate variables' importance, indicated that the most important variables were the distance from bus stations, bakeries, hospitals, mosques, ATMs (automated teller machines), banks, and the minimum temperature of the coldest month.ConclusionsWe believe that this study's risk maps are the primary, fundamental step to take for managing and controlling COVID-19 in Iran and its provinces.Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.