• Cochrane Db Syst Rev · Nov 2020

    Review Meta Analysis

    (Ultra-)long-acting insulin analogues versus NPH insulin (human isophane insulin) for adults with type 2 diabetes mellitus.

    • Thomas Semlitsch, Jennifer Engler, Andrea Siebenhofer, Klaus Jeitler, Andrea Berghold, and Karl Horvath.
    • Institute of General Practice and Evidence-Based Health Services Research, Medical University of Graz, Graz, Austria.
    • Cochrane Db Syst Rev. 2020 Nov 9; 11 (11): CD005613CD005613.

    BackgroundEvidence that antihyperglycaemic therapy is beneficial for people with type 2 diabetes mellitus is conflicting. While the United Kingdom Prospective Diabetes Study (UKPDS) found tighter glycaemic control to be positive, other studies, such as the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, found the effects of an intensive therapy to lower blood glucose to near normal levels to be more harmful than beneficial. Study results also showed different effects for different antihyperglycaemic drugs, regardless of the achieved blood glucose levels. In consequence, firm conclusions on the effect of interventions on patient-relevant outcomes cannot be drawn from the effect of these interventions on blood glucose concentration alone. In theory, the use of newer insulin analogues may result in fewer macrovascular and microvascular events.ObjectivesTo compare the effects of long-term treatment with (ultra-)long-acting insulin analogues (insulin glargine U100 and U300, insulin detemir and insulin degludec) with NPH (neutral protamine Hagedorn) insulin (human isophane insulin) in adults with type 2 diabetes mellitus.Search MethodsFor this Cochrane Review update, we searched CENTRAL, MEDLINE, Embase, ICTRP Search Portal and ClinicalTrials.gov. The date of the last search was 5 November 2019, except Embase which was last searched 26 January 2017. We applied no language restrictions.Selection CriteriaWe included randomised controlled trials (RCTs) comparing the effects of treatment with (ultra-)long-acting insulin analogues to NPH in adults with type 2 diabetes mellitus.Data Collection And AnalysisTwo review authors independently selected trials, assessed risk of bias, extracted data and evaluated the overall certainty of the evidence using GRADE. Trials were pooled using random-effects meta-analyses.Main ResultsWe identified 24 RCTs. Of these, 16 trials compared insulin glargine to NPH insulin and eight trials compared insulin detemir to NPH insulin. In these trials, 3419 people with type 2 diabetes mellitus were randomised to insulin glargine and 1321 people to insulin detemir. The duration of the included trials ranged from 24 weeks to five years. For studies, comparing insulin glargine to NPH insulin, target values ranged from 4.0 mmol/L to 7.8 mmol/L (72 mg/dL to 140 mg/dL) for fasting blood glucose (FBG), from 4.4 mmol/L to 6.6 mmol/L (80 mg/dL to 120 mg/dL) for nocturnal blood glucose and less than 10 mmol/L (180 mg/dL) for postprandial blood glucose, when applicable. Blood glucose and glycosylated haemoglobin A1c (HbA1c) target values for studies comparing insulin detemir to NPH insulin ranged from 4.0 mmol/L to 7.0 mmol/L (72 mg/dL to 126 mg/dL) for FBG, less than 6.7 mmol/L (120 mg/dL) to less than 10 mmol/L (180 mg/dL) for postprandial blood glucose, 4.0 mmol/L to 7.0 mmol/L (72 mg/dL to 126 mg/dL) for nocturnal blood glucose and 5.8% to less than 6.4% HbA1c, when applicable. All trials had an unclear or high risk of bias for several risk of bias domains. Overall, insulin glargine and insulin detemir resulted in fewer participants experiencing hypoglycaemia when compared with NPH insulin. Changes in HbA1c were comparable for long-acting insulin analogues and NPH insulin. Insulin glargine compared to NPH insulin had a risk ratio (RR) for severe hypoglycaemia of 0.68 (95% confidence interval (CI) 0.46 to 1.01; P = 0.06; absolute risk reduction (ARR) -1.2%, 95% CI -2.0 to 0; 14 trials, 6164 participants; very low-certainty evidence). The RR for serious hypoglycaemia was 0.75 (95% CI 0.52 to 1.09; P = 0.13; ARR -0.7%, 95% CI -1.3 to 0.2; 10 trials, 4685 participants; low-certainty evidence). Treatment with insulin glargine reduced the incidence of confirmed hypoglycaemia and confirmed nocturnal hypoglycaemia. Treatment with insulin detemir compared to NPH insulin found an RR for severe hypoglycaemia of 0.45 (95% CI 0.17 to 1.20; P = 0.11; ARR -0.9%, 95% CI -1.4 to 0.4; 5 trials, 1804 participants; very low-certainty evidence). The Peto odds ratio for serious hypoglycaemia was 0.16, 95% CI 0.04 to 0.61; P = 0.007; ARR -0.9%, 95% CI -1.1 to -0.4; 5 trials, 1777 participants; low-certainty evidence). Treatment with detemir also reduced the incidence of confirmed hypoglycaemia and confirmed nocturnal hypoglycaemia. Information on patient-relevant outcomes such as death from any cause, diabetes-related complications, health-related quality of life and socioeconomic effects was insufficient or lacking in almost all included trials. For those outcomes for which some data were available, there were no meaningful differences between treatment with glargine or detemir and treatment with NPH. There was no clear difference between insulin-analogues and NPH insulin in terms of weight gain. The incidence of adverse events was comparable for people treated with glargine or detemir, and people treated with NPH. We found no trials comparing ultra-long-acting insulin glargine U300 or insulin degludec with NPH insulin.Authors' ConclusionsWhile the effects on HbA1c were comparable, treatment with insulin glargine and insulin detemir resulted in fewer participants experiencing hypoglycaemia when compared with NPH insulin. Treatment with insulin detemir also reduced the incidence of serious hypoglycaemia. However, serious hypoglycaemic events were rare and the absolute risk reducing effect was low. Approximately one in 100 people treated with insulin detemir instead of NPH insulin benefited. In the studies, low blood glucose and HbA1c targets, corresponding to near normal or even non-diabetic blood glucose levels, were set. Therefore, results from the studies are only applicable to people in whom such low blood glucose concentrations are targeted. However, current guidelines recommend less-intensive blood glucose lowering for most people with type 2 diabetes in daily practice (e.g. people with cardiovascular diseases, a long history of type 2 diabetes, who are susceptible to hypoglycaemia or older people). Additionally, low-certainty evidence and trial designs that did not conform with current clinical practice meant it remains unclear if the same effects will be observed in daily clinical practice. Most trials did not report patient-relevant outcomes.Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.