-
Clin J Am Soc Nephrol · Nov 2020
Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury.
- Kumardeep Chaudhary, Akhil Vaid, Áine Duffy, Ishan Paranjpe, Suraj Jaladanki, Manish Paranjpe, Kipp Johnson, Avantee Gokhale, Pattharawin Pattharanitima, Kinsuk Chauhan, Ross O'Hagan, Tielman Van Vleck, Steven G Coca, Richard Cooper, Benjamin Glicksberg, Erwin P Bottinger, Lili Chan, and Girish N Nadkarni.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Clin J Am Soc Nephrol. 2020 Nov 6; 15 (11): 1557-1565.
Background And ObjectivesSepsis-associated AKI is a heterogeneous clinical entity. We aimed to agnostically identify sepsis-associated AKI subphenotypes using deep learning on routinely collected data in electronic health records.Design, Setting, Participants, & MeasurementsWe used the Medical Information Mart for Intensive Care III database, which consists of electronic health record data from intensive care units in a tertiary care hospital in the United States. We included patients ≥18 years with sepsis who developed AKI within 48 hours of intensive care unit admission. We then used deep learning to utilize all available vital signs, laboratory measurements, and comorbidities to identify subphenotypes. Outcomes were mortality 28 days after AKI and dialysis requirement.ResultsWe identified 4001 patients with sepsis-associated AKI. We utilized 2546 combined features for K-means clustering, identifying three subphenotypes. Subphenotype 1 had 1443 patients, and subphenotype 2 had 1898 patients, whereas subphenotype 3 had 660 patients. Subphenotype 1 had the lowest proportion of liver disease and lowest Simplified Acute Physiology Score II scores compared with subphenotypes 2 and 3. The proportions of patients with CKD were similar between subphenotypes 1 and 3 (15%) but highest in subphenotype 2 (21%). Subphenotype 1 had lower median bilirubin levels, aspartate aminotransferase, and alanine aminotransferase compared with subphenotypes 2 and 3. Patients in subphenotype 1 also had lower median lactate, lactate dehydrogenase, and white blood cell count than patients in subphenotypes 2 and 3. Subphenotype 1 also had lower creatinine and BUN than subphenotypes 2 and 3. Dialysis requirement was lowest in subphenotype 1 (4% versus 7% [subphenotype 2] versus 26% [subphenotype 3]). The mortality 28 days after AKI was lowest in subphenotype 1 (23% versus 35% [subphenotype 2] versus 49% [subphenotype 3]). After adjustment, the adjusted odds ratio for mortality for subphenotype 3, with subphenotype 1 as a reference, was 1.9 (95% confidence interval, 1.5 to 2.4).ConclusionsUtilizing routinely collected laboratory variables, vital signs, and comorbidities, we were able to identify three distinct subphenotypes of sepsis-associated AKI with differing outcomes.Copyright © 2020 by the American Society of Nephrology.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.