• PLoS medicine · Nov 2020

    Association between country preparedness indicators and quality clinical care for cardiovascular disease risk factors in 44 lower- and middle-income countries: A multicountry analysis of survey data.

    • Justine I Davies, Sumithra Krishnamurthy Reddiar, Lisa R Hirschhorn, Cara Ebert, Maja-Emilia Marcus, Jacqueline A Seiglie, Zhaxybay Zhumadilov, Adil Supiyev, Lela Sturua, Bahendeka K Silver, Abla M Sibai, Sarah Quesnel-Crooks, Bolormaa Norov, Joseph K Mwangi, Omar Mwalim Omar, Roy Wong-McClure, Mary T Mayige, Joao S Martins, Nuno Lunet, Demetre Labadarios, Khem B Karki, Gibson B Kagaruki, Jutta M A Jorgensen, Nahla C Hwalla, Dismand Houinato, Corine Houehanou, David Guwatudde, Mongal S Gurung, Pascal Bovet, Brice W Bicaba, Krishna K Aryal, Mohamed Msaidié, Glennis Andall-Brereton, Garry Brian, Andrew Stokes, Sebastian Vollmer, Till Bärnighausen, Rifat Atun, Pascal Geldsetzer, Jennifer Manne-Goehler, and Lindsay M Jaacks.
    • Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom.
    • PLoS Med. 2020 Nov 1; 17 (11): e1003268e1003268.

    BackgroundCardiovascular diseases are leading causes of death, globally, and health systems that deliver quality clinical care are needed to manage an increasing number of people with risk factors for these diseases. Indicators of preparedness of countries to manage cardiovascular disease risk factors (CVDRFs) are regularly collected by ministries of health and global health agencies. We aimed to assess whether these indicators are associated with patient receipt of quality clinical care.Methods And FindingsWe did a secondary analysis of cross-sectional, nationally representative, individual-patient data from 187,552 people with hypertension (mean age 48.1 years, 53.5% female) living in 43 low- and middle-income countries (LMICs) and 40,795 people with diabetes (mean age 52.2 years, 57.7% female) living in 28 LMICs on progress through cascades of care (condition diagnosed, treated, or controlled) for diabetes or hypertension, to indicate outcomes of provision of quality clinical care. Data were extracted from national-level World Health Organization (WHO) Stepwise Approach to Surveillance (STEPS), or other similar household surveys, conducted between July 2005 and November 2016. We used mixed-effects logistic regression to estimate associations between each quality clinical care outcome and indicators of country development (gross domestic product [GDP] per capita or Human Development Index [HDI]); national capacity for the prevention and control of noncommunicable diseases ('NCD readiness indicators' from surveys done by WHO); health system finance (domestic government expenditure on health [as percentage of GDP], private, and out-of-pocket expenditure on health [both as percentage of current]); and health service readiness (number of physicians, nurses, or hospital beds per 1,000 people) and performance (neonatal mortality rate). All models were adjusted for individual-level predictors including age, sex, and education. In an exploratory analysis, we tested whether national-level data on facility preparedness for diabetes were positively associated with outcomes. Associations were inconsistent between indicators and quality clinical care outcomes. For hypertension, GDP and HDI were both positively associated with each outcome. Of the 33 relationships tested between NCD readiness indicators and outcomes, only two showed a significant positive association: presence of guidelines with being diagnosed (odds ratio [OR], 1.86 [95% CI 1.08-3.21], p = 0.03) and availability of funding with being controlled (OR, 2.26 [95% CI 1.09-4.69], p = 0.03). Hospital beds (OR, 1.14 [95% CI 1.02-1.27], p = 0.02), nurses/midwives (OR, 1.24 [95% CI 1.06-1.44], p = 0.006), and physicians (OR, 1.21 [95% CI 1.11-1.32], p < 0.001) per 1,000 people were positively associated with being diagnosed and, similarly, with being treated; and the number of physicians was additionally associated with being controlled (OR, 1.12 [95% CI 1.01-1.23], p = 0.03). For diabetes, no positive associations were seen between NCD readiness indicators and outcomes. There was no association between country development, health service finance, or health service performance and readiness indicators and any outcome, apart from GDP (OR, 1.70 [95% CI 1.12-2.59], p = 0.01), HDI (OR, 1.21 [95% CI 1.01-1.44], p = 0.04), and number of physicians per 1,000 people (OR, 1.28 [95% CI 1.09-1.51], p = 0.003), which were associated with being diagnosed. Six countries had data on cascades of care and nationwide-level data on facility preparedness. Of the 27 associations tested between facility preparedness indicators and outcomes, the only association that was significant was having metformin available, which was positively associated with treatment (OR, 1.35 [95% CI 1.01-1.81], p = 0.04). The main limitation was use of blood pressure measurement on a single occasion to diagnose hypertension and a single blood glucose measurement to diagnose diabetes.ConclusionIn this study, we observed that indicators of country preparedness to deal with CVDRFs are poor proxies for quality clinical care received by patients for hypertension and diabetes. The major implication is that assessments of countries' preparedness to manage CVDRFs should not rely on proxies; rather, it should involve direct assessment of quality clinical care.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.