• Can J Anaesth · Feb 2021

    Renal microvascular oxygen tension during hyperoxia and acute hemodilution assessed by phosphorescence quenching and excitation with blue and red light.

    • Kyle Chin, Melina P Cazorla-Bak, Elaine Liu, Linda Nghiem, Yanling Zhang, Julie Yu, David F Wilson, Sergei A Vinogradov, Richard E Gilbert, Kim A Connelly, Roger G Evans, Andrew J Baker, David Mazer C C Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada. , and Hare Gregory M T GMT Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada. greg.hare@unityhealth.to. .
    • Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
    • Can J Anaesth. 2021 Feb 1; 68 (2): 214-225.

    PurposeThe kidney plays a central physiologic role as an oxygen sensor. Nevertheless, the direct mechanism by which this occurs is incompletely understood. We measured renal microvascular partial pressure of oxygen (PkO2) to determine the impact of clinically relevant conditions that acutely change PkO2 including hyperoxia and hemodilution.MethodsWe utilized two-wavelength excitation (red and blue spectrum) of the intravascular phosphorescent oxygen sensitive probe Oxyphor PdG4 to measure renal tissue PO2 in anesthetized rats (2% isoflurane, n = 6) under two conditions of altered arterial blood oxygen content (CaO2): 1) hyperoxia (fractional inspired oxygen 21%, 30%, and 50%) and 2) acute hemodilutional anemia (baseline, 25% and 50% acute hemodilution). The mean arterial blood pressure (MAP), rectal temperature, arterial blood gases (ABGs), and chemistry (radiometer) were measured under each condition. Blue and red light enabled measurement of PkO2 in the superficial renal cortex and deeper cortical and medullary tissue, respectively.ResultsPkO2 was higher in the superficial renal cortex (~ 60 mmHg, blue light) relative to the deeper renal cortex and outer medulla (~ 45 mmHg, red light). Hyperoxia resulted in a proportional increase in PkO2 values while hemodilution decreased microvascular PkO2 in a linear manner in both superficial and deeper regions of the kidney. In both cases (blue and red light), PkO2 correlated with CaO2 but not with MAP.ConclusionThe observed linear relationship between CaO2 and PkO2 shows the biological function of the kidney as a quantitative sensor of anemic hypoxia and hyperoxia. A better understanding of the impact of changes in PkO2 may inform clinical practices to improve renal oxygen delivery and prevent acute kidney injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.