-
- Bradley J Hindman, Robert P From, Ricardo B Fontes, Vincent C Traynelis, Michael M Todd, M Bridget Zimmerman, Christian M Puttlitz, and Brandon G Santoni.
- From the Department of Anesthesia, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa (B.J.H., R.P.F., M.M.T.); Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois (R.B.F., V.C.T.); Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa (M.B.Z.); Department of Mechanical Engineering, School of Biomedical Engineering, Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado (C.M.P.); and Foundation for Orthopaedic Research and Education, Tampa, Florida (B.G.S.).
- Anesthesiology. 2015 Nov 1;123(5):1042-58.
BackgroundThe aims of this study are to characterize (1) the cadaver intubation biomechanics, including the effect of repeated intubations, and (2) the relation between intubation force and the motion of an injured cervical segment.MethodsFourteen cadavers were serially intubated using force-sensing Macintosh and Airtraq laryngoscopes in random order, with simultaneous cervical spine motion recorded with lateral fluoroscopy. Motion of the C1-C2 segment was measured in the intact and injured state (type II odontoid fracture). Injured C1-C2 motion was proportionately corrected for changes in intubation forces that occurred with repeated intubations.ResultsCadaver intubation biomechanics were comparable with those of patients in all parameters other than C2-C5 extension. In cadavers, intubation force (set 2/set 1 force ratio = 0.61; 95% CI, 0.46 to 0.81; P = 0.002) and Oc-C5 extension (set 2 - set 1 difference = -6.1 degrees; 95% CI, -11.4 to -0.9; P = 0.025) decreased with repeated intubations. In cadavers, C1-C2 extension did not differ (1) between intact and injured states; or (2) in the injured state, between laryngoscopes (with and without force correction). With force correction, in the injured state, C1-C2 subluxation was greater with the Airtraq (mean difference 2.8 mm; 95% CI, 0.7 to 4.9 mm; P = 0.004).ConclusionsWith limitations, cadavers may be clinically relevant models of intubation biomechanics and cervical spine motion. In the setting of a type II odontoid fracture, C1-C2 motion during intubation with either the Macintosh or the Airtraq does not appear to greatly exceed physiologic values or to have a high likelihood of hyperextension or direct cord compression.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.