• Circ Heart Fail · Jul 2011

    Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling.

    • Joel Schilling, Ling Lai, Nandakumar Sambandam, Courtney E Dey, Teresa C Leone, and Daniel P Kelly.
    • Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
    • Circ Heart Fail. 2011 Jul 1; 4 (4): 474-82.

    BackgroundCurrently, there are no specific therapies available to treat cardiac dysfunction caused by sepsis and other chronic inflammatory conditions. Activation of toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is an early event in Gram-negative bacterial sepsis, triggering a robust inflammatory response and changes in metabolism. Peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) α and β serve as critical physiological regulators of energy metabolic gene expression in heart.Methods And ResultsInjection of mice with LPS triggered a myocardial fuel switch similar to that of the failing heart: reduced mitochondrial substrate flux and myocyte lipid accumulation. The LPS-induced metabolic changes were associated with diminished ventricular function and suppression of the genes encoding PGC-1α and β, known transcriptional regulators of mitochondrial function. This cascade of events required TLR4 and nuclear factor-κB activation. Restoration of PGC-1β expression in cardiac myocytes in culture and in vivo in mice reversed the gene regulatory, metabolic, and functional derangements triggered by LPS. Interestingly, the effects of PGC-1β overexpression were independent of the upstream inflammatory response, highlighting the potential utility of modulating downstream metabolic derangements in cardiac myocytes as a novel strategy to prevent or treat sepsis-induced heart failure.ConclusionsLPS triggers cardiac energy metabolic reprogramming through suppression of PGC-1 coactivators in the cardiac myocyte. Reactivation of PGC-1β expression can reverse the metabolic and functional derangements caused by LPS-TLR4 activation, identifying the PGC-1 axis as a candidate therapeutic target for sepsis-induced heart failure.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.