-
Arch Orthop Trauma Surg · Dec 2020
Use of porous custom-made cones for meta-diaphyseal bone defects reconstruction in knee revision surgery: a clinical and biomechanical analysis.
- Giorgio Burastero, Silvia Pianigiani, Cristiana Zanvettor, Luca Cavagnaro, Francesco Chiarlone, and Bernardo Innocenti.
- Orthopedic and Traumatology Unit 2, Prosthetic Surgery, Santa Corona Hospital, Pietra Ligure, Italy.
- Arch Orthop Trauma Surg. 2020 Dec 1; 140 (12): 204120552041-2055.
IntroductionAlthough the practice of metaphyseal reconstruction has obtained successful clinical and radiological results in revision total knee surgery, off-the-shelf devices aren't an effective solution for all patients as they do not cover the full range of clinical possibilities. For this reason, during severe knee revisions, custom-made porous titanium cementless metaphyseal cones are nowadays employed as alternative to traditional surgeries. The aim of this study is to understand the benefits gained by the use of the custom-made cones against the performance of more traditional techniques, such as the use of cemented or cementless stems. Thus, a retrospective study on eleven patients and a biomechanical finite element analysis (FEA) was developed, based upon three clinical cases of the clinical analyzed cohort.Materials And MethodsEleven patients underwent staged total knee arthroplasty revision with the use of 16 custom-made cones to correct severe femoral and tibial meta-diaphyseal bone defects. Clinical scores and range of movement were observed during the follow-up period (mean follow-up 26 ± 9.4 months). Reason for surgery was periprosthetic joint infection (PJI) in eight patients and post-traumatic osteomyelitis in the other three patients. Three patients previously affected by PJI were selected among the eleven patients of the clinical population. For those patients, bone geometries and implants during surgery were replicated in silico and analyzed during different daily activities. For the same patients, as alternative solution for surgery, the use of cemented or cementless stems was also simulated by FEA. Stress patterns in different region of interest and risk of fracture in the bone were calculated and compared.ResultsNo loosening, component migration, or mismatches between preoperative planning and intraoperative findings were clinically registered. Biomechanical results demonstrated that the use of custom-made cones induces a more homogeneously distributed bone stress than the other two techniques that concentrate the stress in spotted regions. The risk of fracture is comparable between the use of custom-made cones and cemented technique, while press-fit configurations increase the risk of fracture (more than 35%).ConclusionsBased upon the clinical evidence and the findings after the FEAs, the practice of porous custom-made metaphyseal cones in severe revisions of knee arthroplasties is showing promising biomechanical results. The homogeneous stresses distributions and the lower bone stress gradient could justify a reduction of bone fractures and the risk of implant loosening which could be the explanation to the successful clinical outcomes.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.