-
- Saumil Maheshwari, Aman Agarwal, Anupam Shukla, and Ritu Tiwari.
- Soft Computing and Expert System Laboratory, ABV-Indian Institute of Information Technology and Management, Gwalior 474010, Madhya Pradesh, India.
- Biomed Tech (Berl). 2020 Aug 27; 65 (4): 435-446.
AbstractIntensive care units (ICUs) are responsible for generating a wealth of useful data in the form of electronic health records. We aimed to build a mortality prediction model on a Medical Information Mart for Intensive Care (MIMIC-III) database and to assess whether the use of deep learning techniques like long short-term memory (LSTM) can effectively utilize the temporal relations among clinical variables. The models were built on clinical variable dynamics of the first 48 h of ICU admission of 12,550 records from the MIMIC-III database. A total of 36 variables including 33 time series variables and three static variables were used for the prediction. We present the application of LSTM and LSTM attention (LSTM-AT) model for mortality prediction with such a large number of clinical variables dataset. For training and validation purpose, we have used International Classification of Diseases, 9th edition (ICD-9) codes for extracting the patients with cardiovascular disease, and infections and parasitic disease, respectively. The effectiveness of the LSTM model is achieved over non-recurrent baseline models like naïve Bayes, logistic regression (LR), support vector machine and multilayer perceptron (MLP) by generating state of the art results (area under the curve [AUC], 0.852). Next, by providing attention at each time stamp, we developed a model, LSTM-AT, which exhibits even better performance (AUC, 0.876).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.