• J. Appl. Physiol. · Jun 2020

    Comparison of pleural and esophageal pressure in supine and prone positions in a porcine model of acute respiratory distress syndrome.

    • N Terzi, S Bayat, N Noury, E Turbil, W Habre, L Argaud, M Cour, B Louis, and C Guérin.
    • Médecine Intensive Réanimation, CHU Grenoble-Alpes, Grenoble, France.
    • J. Appl. Physiol. 2020 Jun 1; 128 (6): 1617-1625.

    AbstractPatients with moderate to severe acute respiratory distress syndrome (ARDS) benefit from prone positioning. Although the accuracy of esophageal pressure (Pes) to estimate regional pleural pressure (Ppl) has previously been assessed in the supine position, such data are not available in the prone position in ARDS. In six anesthetized, paralyzed, and mechanically ventilated female pigs, we measured Pes and Ppl into dorsal and ventral parts of the right pleural cavity. Airway pressure (Paw) and flow were measured at the airway opening. Severe ARDS [arterial partial pressure of oxygen ([Formula: see text])/fraction of inspired oxygen ([Formula: see text]) < 100 mmHg at positive end-expiratory pressure (PEEP) of 5 cmH2O] was induced by surfactant depletion. In supine and prone positions assigned in a random order, PEEP was set to 20, 15, 10, and 5 cmH2O and static end-expiratory chest wall pressures were measured from Pes (PEEPtot,es) and dorsal (PEEPtot,PplD) and ventral (PEEPtot,PplV) Ppl. The magnitude of the difference between PEEPtot,es and PEEPtot,PplD was similar in each position [-3.6 cmH2O in supine vs. -3.8 cmH2O in prone at PEEP 20 cmH2O (PEEP 20)]. The difference between PEEPtot,es and PEEPtot,PplV became narrower in the prone position (-8.3 cmH2O supine vs. -3.0 cmH2O prone at PEEP 20). PEEPtot,PplV was overestimated by Pes in the prone position at higher pressures. The median (1st-3rd quartiles) dorsal-to-ventral Ppl gradient was 4.4 (2.4-6.8) cmH2O in the supine position and -1.5 (-3.5 to +1.1) cmH2O in the prone position (P < 0.0001) and marginally influenced by PEEP (P = 0.058). Prone position narrowed end-expiratory dorsal-to-ventral Ppl vertical gradient, likely because of a more even distribution of mechanical forces over the chest wall.NEW & NOTEWORTHY In a porcine model of acute respiratory distress syndrome, we found that static end-expiratory esophageal pressure did not change significantly in prone position compared with supine position at any positive end-expiratory pressure (PEEP) tested between 5 and 20 cmH2O. Prone position was associated with an increased ventral pleural pressure and reduced end-expiratory dorsal-to-ventral pleural pressure (Ppl) vertical gradient, likely due to a more even distribution of mechanical forces over the chest wall.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…