• J Burn Care Res · Oct 2019

    Time-Independent Prediction of Burn Depth Using Deep Convolutional Neural Networks.

    • Marco Domenico Cirillo, Robin Mirdell, Folke Sjöberg, and Tuan D Pham.
    • Department of Biomedical Engineering, Linköping University, Sweden.
    • J Burn Care Res. 2019 Oct 16; 40 (6): 857-863.

    AbstractWe present in this paper the application of deep convolutional neural networks (CNNs), which is a state-of-the-art artificial intelligence (AI) approach in machine learning, for automated time-independent prediction of burn depth. Color images of four types of burn depth injured in first few days, including normal skin and background, acquired by a TiVi camera were trained and tested with four pretrained deep CNNs: VGG-16, GoogleNet, ResNet-50, and ResNet-101. In the end, the best 10-fold cross-validation results obtained from ResNet-101 with an average, minimum, and maximum accuracy are 81.66, 72.06, and 88.06%, respectively; and the average accuracy, sensitivity, and specificity for the four different types of burn depth are 90.54, 74.35, and 94.25%, respectively. The accuracy was compared with the clinical diagnosis obtained after the wound had healed. Hence, application of AI is very promising for prediction of burn depth and, therefore, can be a useful tool to help in guiding clinical decision and initial treatment of burn wounds.© American Burn Association 2019. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…