• Magn Reson Med · Jul 2014

    Improved quantification precision of human brain short echo-time (1) H magnetic resonance spectroscopy at high magnetic field: a simulation study.

    • Dinesh Kumar Deelchand, Isabelle Iltis, and Pierre-Gilles Henry.
    • Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
    • Magn Reson Med. 2014 Jul 1; 72 (1): 20-5.

    PurposeThe gain in quantification precision that can be expected in human brain (1) H MRS at very high field remains a matter of debate. Here, we investigate this issue using Monte-Carlo simulations.MethodsSimulated human brain-like (1) H spectra were fitted repeatedly with different noise realizations using LCModel at B0 ranging from 1.5T to 11.7T, assuming a linear increase in signal-to-noise ratio with B0 in the time domain, and assuming a linear increase in linewidth with B0 based on experimental measurements. Average quantification precision (Cramér-Rao lower bound) was then determined for each metabolite as a function of B0 .ResultsFor singlets, Cramér-Rao lower bounds improved (decreased) by a factor of ∼ B0 as B0 increased, as predicted by theory. For most J-coupled metabolites, Cramér-Rao lower bounds decreased by a factor ranging from B0 to B0 as B0 increased, reflecting additional gains in quantification precision compared to singlets owing to simplification of spectral pattern and reduced overlap.ConclusionsQuantification precision of (1) H magnetic resonance spectroscopy in human brain continues to improve with B0 up to 11.7T although peak signal-to-noise ratio in the frequency domain levels off above 3T. In most cases, the gain in quantification precision is higher for J-coupled metabolites than for singlets.Copyright © 2013 Wiley Periodicals, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.