• Spine J · May 2019

    Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-specific modeling.

    • Victor E Staartjes, Marlies P de Wispelaere, William Peter Vandertop, and Marc L Schröder.
    • Department of Neurosurgery, Bergman Clinics Amsterdam, Rijksweg 69, 1411 GE Naarden, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery, Amsterdam Movement Sciences, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland. Electronic address: victor.staartjes@gmail.com.
    • Spine J. 2019 May 1; 19 (5): 853-861.

    Background ContextThere is considerable variability in patient-reported outcome measures following surgery for lumbar disc herniation. Individualized prediction tools that are derived from center- or even surgeon-specific data could provide valuable insights for shared decision-making.PurposeTo evaluate the feasibility of deriving robust deep learning-based predictive analytics from single-center, single-surgeon data.Study DesignDerivation of predictive models from a prospective registry.Patient SamplePatients who underwent single-level tubular microdiscectomy for lumbar disc herniation.Outcome MeasuresNumeric rating scales for leg and back pain severity and Oswestry Disability Index scores at 12 months postoperatively.MethodsData were derived from a prospective registry. We trained deep neural network-based and logistic regression-based prediction models for patient-reported outcome measures. The primary endpoint was achievement of the minimum clinically important difference (MCID) in numeric rating scales and Oswestry Disability Index, defined as a 30% or greater improvement from baseline. Univariate predictors of MCID were also identified using conventional statistics.ResultsA total of 422 patients were included (mean [SD] age: 48.5 [11.5] years; 207 [49%] female). After 1 year, 337 (80%), 219 (52%), and 337 (80%) patients reported a clinically relevant improvement in leg pain, back pain, and functional disability, respectively. The deep learning models predicted MCID with high area-under-the-curve of 0.87, 0.90, and 0.84, as well as accuracy of 85%, 87%, and 75%. The regression models provided inferior performance measures for each of the outcomes.ConclusionsOur study demonstrates that generating personalized and robust deep learning-based analytics for outcome prediction is feasible even with limited amounts of center-specific data. With prospective validation, the ability to preoperatively and reliably inform patients about the likelihood of symptom improvement could prove useful in patient counselling and shared decision-making.Copyright © 2018 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.