-
- Anna Wermer, Joseph Kerwin, Kelsea Welsh, Ricardo Mejia-Alvarez, Michaelann Tartis, and Adam Willis.
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801.
- Mil Med. 2020 Jan 7; 185 (Suppl 1): 205-213.
IntroductionThe mechanical response of brain tissue to high-speed forces in the blast and blunt traumatic brain injury is poorly understood. Object-to-object variation and interspecies differences are current limitations in animal and cadaver studies conducted to study damage mechanisms. Biofidelic and transparent tissue simulants allow the use of high-speed optical diagnostics during a blast event, making it possible to observe deformations and damage patterns for comparison to observed injuries seen post-mortem in traumatic brain injury victims.MethodsMaterial properties of several tissue simulants were quantified using standard mechanical characterization techniques, that is, shear rheometric, tensile, and compressive testing.ResultsPolyacrylamide simulants exhibited the best optical and mechanical property matching with the fewest trade-offs in the design of a cranial test object. Polyacrylamide gels yielded densities of ~1.04 g/cc and shear moduli ranging 1.3-14.55 kPa, allowing gray and white matter simulant tuning to a 30-35% difference in shear for biofidelity.ConclusionsThese materials are intended for use as layered cranial phantoms in a shock tube and open field blasts, with focus on observing phenomena occurring at the interfaces of adjacent tissue simulant types or material-fluid boundaries. Mechanistic findings from these studies may be used to inform the design of protective gear to mitigate blast injuries.Published by Oxford University Press on behalf of Association of Military Surgeons of the United States 2020.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.