-
- Fu-Jung Hsiao, Wei-Ta Chen, Hung-Yu Liu, Yen-Feng Wang, Shih-Pin Chen, Kuan-Lin Lai, Li-Ling Hope Pan, and Shuu-Jiun Wang.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan. fujunghsiao@gmail.com.
- J Headache Pain. 2020 Nov 16; 21 (1): 133.
BackgroundPain sensitivity may determine the risk, severity, prognosis, and efficacy of treatment of clinical pain. Magnetic resonance imaging studies have linked thermal pain sensitivity to changes in brain structure. However, the neural correlates of mechanical pain sensitivity remain to be clarified through investigation of direct neural activities on the resting-state cortical oscillation and synchrony.MethodsWe recorded the resting-state magnetoencephalographic (MEG) activities of 27 healthy individuals and 30 patients with episodic migraine (EM) and analyzed the source-based oscillatory powers and functional connectivity at 2 to 59 Hz in pain-related cortical regions, which are the bilateral anterior cingulate cortex (ACC), medial orbitofrontal (MOF) cortex, lateral orbitofrontal (LOF) cortex, insula cortex, primary somatosensory cortex (SI), primary motor cortex (MI), and posterior cingulate cortex (PCC). The mechanical punctate pain threshold (MPPT) was obtained at the supraorbital area (the first branch of the trigeminal nerve dermatome, V1) and the forearm (the first thoracic nerve dermatome, T1) and further correlated with MEG measures.ResultsThe MPPT is inversely correlated with the resting-state relative powers of gamma oscillation in healthy individuals (all corrected P < 0.05). Specifically, inverse correlation was noted between the MPPT at V1 and gamma powers in the bilateral insula (r = - 0.592 [left] and - 0.529 [right]), PCC (r = - 0.619 and - 0.541) and MI (r = - 0.497 and - 0.549) and between the MPPT at T1 and powers in the left PCC (r = - 0.561) and bilateral MI (r = - 0.509 and - 0.520). Furthermore, resting-state functional connectivity at the delta to beta bands, especially between frontal (MOF, ACC, LOF, and MI), parietal (PCC), and sensorimotor (bilateral SI and MI) regions, showed a positive correlation with the MPPT at V1 and T1 (all corrected P < 0.05). By contrast, in patients with EM, the MPPT was not associated with resting-state cortical activities.ConclusionsPain sensitivity in healthy individuals is associated with the resting-state gamma oscillation and functional connectivity in pain-related cortical regions. Further studies must be conducted in a large population to confirm whether resting-state cortical activities can be an objective measurement of pain sensitivity in individuals without clinical pain.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.