-
Transbound Emerg Dis · Jul 2021
Epidemic analysis of COVID -19 in Italy based on spatiotemporal geographic information and Google Trends.
- Bing Niu, Ruirui Liang, Shuwen Zhang, Hui Zhang, Xiaosheng Qu, Qiang Su, Linfeng Zheng, and Qin Chen.
- School of Life Sciences, Shanghai University, Shanghai, China.
- Transbound Emerg Dis. 2021 Jul 1; 68 (4): 2384-2400.
AbstractSince the first two novel coronavirus cases appeared in January of 2020, the outbreak of the COVID-19 epidemic seriously threatens the public health of Italy. In this article, the distribution characteristics and spreading of COVID-19 in various regions of Italy were analysed by heat maps. Meanwhile, spatial autocorrelation, spatiotemporal clustering analysis and kernel density method were also applied to analyse the spatial clustering of COVID-19. The results showed that the Italian epidemic has a temporal trend and spatial aggregation. The epidemic was concentrated in northern Italy and gradually spread to other regions. Finally, the Google Trends index of the COVID-19 epidemic was further employed to build a prediction model combined with machine learning algorithms. By using Adaboost algorithm for single-factor modelling,the results show that the AUC of these six features (mask, pneumonia, thermometer, ISS, disinfection and disposable gloves) are all >0.9, indicating that these features have a large contribution to the prediction model. It is also implied that the public's attention to the epidemic is increasing as well as the awareness of the need for protective measures. This increased awareness of the epidemic will prompt the public to pay more attention to protective measures, thereby reducing the risk of coronavirus infection.© 2020 Wiley-VCH GmbH.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.