• J. Virol. Methods · Oct 2018

    Assessment of influenza virus exposure and recovery from contaminated surgical masks and N95 respirators.

    • Francoise M Blachere, William G Lindsley, Cynthia M McMillen, Donald H Beezhold, Edward M Fisher, Ronald E Shaffer, and John D Noti.
    • Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA. Electronic address: fblachere@cdc.gov.
    • J. Virol. Methods. 2018 Oct 1; 260: 98-106.

    AbstractHealthcare workers (HCWs) are at significantly higher risk of exposure to influenza virus during seasonal epidemics and global pandemics. During the 2009 influenza pandemic, some healthcare organizations recommended that HCWs wear respiratory protection such as filtering facepiece respirators, while others indicated that facemasks such as surgical masks (SMs) were sufficient. To assess the level of exposure a HCW may possibly encounter, the aim of this study was to (1.) evaluate if SMs and N95 respirators can serve as "personal bioaerosol samplers" for influenza virus and (2.) determine if SMs and N95 respirators contaminated by influenza laden aerosols can serve as a source of infectious virus for indirect contact transmission. This effort is part of a National Institute for Occupational Safety and Health 5-year multidisciplinary study to determine the routes of influenza transmission in healthcare settings. A coughing simulator was programmed to cough aerosol particles containing influenza virus over a wide concentration range into an aerosol exposure simulation chamber virus/L of exam room air), and a breathing simulator was used to collect virus on either a SM or N95 respirator. Extraction buffers containing nonionic and anionic detergents as well as various protein additives were used to recover influenza virus from the masks and respirators. The inclusion of 0.1% SDS resulted in maximal influenza RNA recovery (41.3%) but with a complete loss of infectivity whereas inclusion of 0.1% bovine serum albumin resulted in reduced RNA recovery (6.8%) but maximal retention of virus infectivity (17.9%). Our results show that a HCW's potential exposure to airborne influenza virus can be assessed in part through analysis of their SMs and N95 respirators, which can effectively serve as personal bioaerosol samplers.Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…