• Experimental physiology · Aug 2020

    Dynamic right and left ventricular interactions in the pig.

    • Michael R Pinsky.
    • Cardiopulmonary Research Laboratory, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
    • Exp. Physiol. 2020 Aug 1; 105 (8): 1293-1315.

    New FindingsWhat is the central question of this study? Are the mechanisms that cause ventricular interdependence different when due to primary right to left ventricular pressure loading? What is the main finding and its importance? An instantaneous selective increase in aortic pressure causes an immediate increase in right ventricular end-systolic pressure independent of the pericardium, whereas a selective increase in pulmonary artery pressure decreases left ventricular diastolic compliance owing to a subsequent increasing right ventricular end-diastolic volume as a function of an intact pericardium limiting biventricular volume. Changes in contraction synchrony of either ventricle do not appear to be causing these effects.AbstractI characterized the dynamic factors determining ventricular interdependence with and without the pericardium. I measured right (RV) and left ventricular (LV) pressures and volumes simultaneously using conductance catheters in seven pentobarbitone-anaesthetized open-chested 5- to 7-week-old piglets. I studied these effects during apnoea, inferior vena caval occlusion and rapid partial aortic and pulmonary arterial occlusions. Conductance catheter-defined long-axis regional volumes were assessed to define regional contractile synchrony. Closed-pericardium measures were made from an initial (baseline) volume, then after two 20 ml kg-1 fluid loads followed by an open-pericardium step. Baseline RV and LV volumes were similar. Aortic occlusion increased LV pressures and volumes and RV end-systolic pressure such that RV end-systolic elastance increased without changes in RV contraction synchrony, not affected by the pericardium. Pulmonary artery occlusion increased RV end-systolic pressure but not end-systolic volume. On the subsequent beat, RV end-diastolic pressure increased, whereas LV end-diastolic volume and diastolic compliance decreased. These effects were attenuated by opening the pericardium. Contraction synchrony across longitudinal segments was unaltered by either aortic or pulmonary artery occlusion. I conclude that the determinants of systolic and diastolic ventricular interdependence are different. Increasing RV pressures causes diastolic RV-to-LV interdependence, decreasing LV diastolic compliance and dependent on an intact pericardium. An increase in LV end-systolic pressure increases RV end-systolic elastance independent of the pericardium and has a minimal effect on RV diastolic function or contraction synchrony.© 2020 The Authors. Experimental Physiology © 2020 The Physiological Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.