• Plos One · Jan 2019

    Machine learning for patient risk stratification for acute respiratory distress syndrome.

    • Daniel Zeiberg, Tejas Prahlad, Brahmajee K Nallamothu, Theodore J Iwashyna, Jenna Wiens, and Michael W Sjoding.
    • Computer Science and Engineering, University of Michigan, Ann Arbor, MI, United States of America.
    • Plos One. 2019 Jan 1; 14 (3): e0214465.

    BackgroundExisting prediction models for acute respiratory distress syndrome (ARDS) require manual chart abstraction and have only fair performance-limiting their suitability for driving clinical interventions. We sought to develop a machine learning approach for the prediction of ARDS that (a) leverages electronic health record (EHR) data, (b) is fully automated, and (c) can be applied at clinically relevant time points throughout a patient's stay.Methods And FindingsWe trained a risk stratification model for ARDS using a cohort of 1,621 patients with moderate hypoxia from a single center in 2016, of which 51 patients developed ARDS. We tested the model in a temporally distinct cohort of 1,122 patients from 2017, of which 27 patients developed ARDS. Gold standard diagnosis of ARDS was made by intensive care trained physicians during retrospective chart review. We considered both linear and non-linear approaches to learning the model. The best model used L2-logistic regression with 984 features extracted from the EHR. For patients observed in the hospital at least six hours who then developed moderate hypoxia, the model achieved an area under the receiver operating characteristics curve (AUROC) of 0.81 (95% CI: 0.73-0.88). Selecting a threshold based on the 85th percentile of risk, the model had a sensitivity of 56% (95% CI: 35%, 74%), specificity of 86% (95% CI: 85%, 87%) and positive predictive value of 9% (95% CI: 5%, 14%), identifying a population at four times higher risk for ARDS than other patients with moderate hypoxia and 17 times the risk of hospitalized adults.ConclusionsWe developed an ARDS prediction model based on EHR data with good discriminative performance. Our results demonstrate the feasibility of a machine learning approach to risk stratifying patients for ARDS solely from data extracted automatically from the EHR.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.