• Medicine · Dec 2019

    Diagnostic accuracy of machine-learning-assisted detection for anterior cruciate ligament injury based on magnetic resonance imaging: Protocol for a systematic review and meta-analysis.

    • Yongfeng Lao, Bibo Jia, Peilin Yan, Minghao Pan, Xu Hui, Jing Li, Wei Luo, Xingjie Li, Jiani Han, Peijing Yan, and Liang Yao.
    • Second Clinical Medical College of Lanzhou University.
    • Medicine (Baltimore). 2019 Dec 1; 98 (50): e18324.

    BackgroundAlthough many machine learning algorithms have been developed to detect anterior cruciate ligament (ACL) injury based on magnetic resonance imaging (MRI), the performance of different algorithms required further investigation. The objectives of this current systematic review are to evaluate the diagnostic accuracy of machine-learning-assisted detection for ACL injury based on MRI and find the current best algorithm.MethodWe will conduct a comprehensive database search for clinical diagnostic tests in PubMed, EMBASE, Cochrane Library, and Web of science without restrictions on publication status and language. The reference lists of the included articles will also be checked to identify additional studies for potential inclusion. Two reviewers will independently review all literature for inclusion and assess their methodological quality using Quality Assessment of Diagnostic Accuracy Studies version 2. Clinical diagnostic tests exploring the efficacy of machine-learning-assisted system for detecting ACL injury based on MRI will be considered for inclusion. Another 2 reviewers will independently extract data from eligible studies based on a pre-designed standardized form. Any disagreements will be resolved by consensus. RevMan 5.3 and Stata SE 12.0 software will be used for data synthesis. If appropriate, we will calculate the summary sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of machine-learning-assisted diagnosis system for ACL injury detection. A hierarchical summary receiver operating characteristic (HSROC) curve will also be plotted, and the area under the ROC curve (AUC) is going to calculated using the bivariate model. If the pooling of results is considered inappropriate, we will present and describe our findings in diagrams and tables and describe them narratively.ResultThis is the first systematic assessment of machine learning system for the detection of ACL injury based on MRI. We predict it will provide highquality synthesis of existing evidence for the diagnostic accuracy of machine-learning-assisted detection for ACL injury and a relatively comprehensive reference for clinical practice and development of interdisciplinary field of artificial intelligence and medicine.ConclusionThis protocol outlined the significance and methodologically details of a systematic review of machine-learning-assisted detection for ACL injury based on MRI. The ongoing systematic review will provide high-quality synthesis of current evidence of machine learning system for detecting ACL injury.RegistrationThe meta-analysis has been prospectively registered in PROSPERO (CRD42019136581).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…