• J. Neurol. Neurosurg. Psychiatr. · Apr 2015

    Anatomic correlates of deep brain stimulation electrode impedance.

    • David Satzer, Eric W Maurer, David Lanctin, Weihua Guan, and Aviva Abosch.
    • Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.
    • J. Neurol. Neurosurg. Psychiatr.. 2015 Apr 1;86(4):398-403.

    BackgroundThe location of the optimal target for deep brain stimulation (DBS) of the subthalamic nucleus (STN) remains controversial. Electrode impedance affects tissue activation by DBS and has been found to vary by contact number, but no studies have examined association between impedance and anatomic location.ObjectivesTo evaluate the relationship between electrode impedance and anatomic contact location, and to assess the clinical significance of impedance.MethodsWe gathered retrospective impedance data from 101 electrodes in 73 patients with Parkinson's disease. We determined contact location using microelectrode recording (MER) and high-field 7T MRI, and assessed the relationship between impedance and contact location.ResultsFor contact location as assessed via MER, impedance was significantly higher for contacts in STN, at baseline (111 Ω vs STN border, p=0.03; 169 Ω vs white matter, p<0.001) and over time (90 Ω vs STN border, p<0.001; 54 Ω vs white matter, p<0.001). Over time, impedance was lowest in contacts situated at STN border (p=0.03). Impedance did not vary by contact location as assessed via imaging. Location determination was 75% consistent between MER and imaging. Impedance was inversely related to absolute symptom reduction during stimulation (-2.5 motor portion of the Unified Parkinson's Disease Rating Scale (mUPDRS) points per 1000 Ω, p=0.01).ConclusionsIn the vicinity of DBS electrodes chronically implanted in STN, impedance is lower at the rostral STN border and in white matter, than in STN. This finding suggests that current reaches white matter fibres more readily than neuronal cell bodies in STN, which may help explain anatomic variation in stimulation efficacy.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.