• Rev Port Cardiol · Nov 2005

    Cardiac resynchronization therapy with sequential biventricular pacing: impact of echocardiography guided VV delay optimization on acute results.

    • Leonor Parreira, José Ferreira Santos, João Madeira, Lígia Mendes, Filipe Seixo, Filomena Caetano, Cláudia Lopes, José Venãncio, Arminda Mateus, J Lopes Inês, and Miguel Mendes.
    • Serviço de Cardiologia, Hospital de São Bernardo, Setúbal, Portugal. lparreira@netvisao.pt
    • Rev Port Cardiol. 2005 Nov 1; 24 (11): 1355-65.

    BackgroundCardiac resynchronization therapy (CRT) improves left ventricular synchrony as evaluated by tissue Doppler imaging (TDI), leading to improved left ventricular performance and reverse remodeling. New CRT devices enable programming of left and right VV delay. The aim of this study was to determine whether sequential biventricular (BiV) pacing by echo-guided programming of VV delay would enhance the response to CRT.Methods15 consecutive patients with severe heart failure and left bundle branch block underwent CRT by BiV device implantation. They were studied with conventional and TDI echo the day before implantation. Left ventricular ejection fraction (LVEF) was determined, and the electromechanical delay (QS), defined as the time interval from the beginning of the QRS to the S wave in pulsed TDI, was assessed in each of the four left ventricular basal segments. The dyssynchrony index was calculated as the difference between the longest and shortest electromechanical delay (QS(max-min)). The parameters were re-evaluated the day after implantation during simultaneous BiV pacing and with seven different VV delays. The optimal VV delay was determined by finding the VV interval corresponding to the maximum aortic velocity time interval (VTI).ResultsQS(max-min) decreased from 85.3 +/- 27.0 msec to 46.7 +/- 23.0 msec (p = 0.0002), LVEF increased from 21.7 +/- 7.3% to 30.0 +/- 7.7% (p = 0.0001) and aortic VTI increased from 12.7 +/- 3.6 cm to 15.2 +/- 4.0 cm (p < 0.0001), with simultaneous BiV pacing. The VV intervals were programmed as follows: LV pre-excitation by 10 msec in five patients, 20 msec in three, 30 msec in two, and 40 msec in three; and RV pre-excitation by 10 msec in one and by 20 msec in one. The maximal aortic VTI obtained with VV delay programming increased from 15.2 +/- 4.0 cm to 17.7 +/- 4.0 cm (p = 0.0005). During optimized sequential BiV pacing, QS(max-min) further decreased from 46.7 +/- 23.0 msec to 30.6 +/- 21.0 msec (p = 0.02) and LVEF further increased from 30.0 +/- 7.7% to 35.0 +/- 7.7% (p = 0.0003).ConclusionsSequential BiV pacing with VV delay optimized by evaluation of aortic VTI enhanced the response to CRT with additional improvements in left ventricular synchrony and left ventricular function compared to simultaneous CRT.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.