• PLoS medicine · Nov 2020

    Comparative Study

    Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: A retrospective validation study.

    • Seung Seog Han, Ik Jun Moon, Seong Hwan Kim, Jung-Im Na, Myoung Shin Kim, Gyeong Hun Park, Ilwoo Park, Keewon Kim, Woohyung Lim, Ju Hee Lee, and Sung Eun Chang.
    • Department of Dermatology, I Dermatology Clinic, Seoul, Korea.
    • PLoS Med. 2020 Nov 1; 17 (11): e1003381e1003381.

    BackgroundThe diagnostic performance of convolutional neural networks (CNNs) for diagnosing several types of skin neoplasms has been demonstrated as comparable with that of dermatologists using clinical photography. However, the generalizability should be demonstrated using a large-scale external dataset that includes most types of skin neoplasms. In this study, the performance of a neural network algorithm was compared with that of dermatologists in both real-world practice and experimental settings.Methods And FindingsTo demonstrate generalizability, the skin cancer detection algorithm (https://rcnn.modelderm.com) developed in our previous study was used without modification. We conducted a retrospective study with all single lesion biopsied cases (43 disorders; 40,331 clinical images from 10,426 cases: 1,222 malignant cases and 9,204 benign cases); mean age (standard deviation [SD], 52.1 [18.3]; 4,701 men [45.1%]) were obtained from the Department of Dermatology, Severance Hospital in Seoul, Korea between January 1, 2008 and March 31, 2019. Using the external validation dataset, the predictions of the algorithm were compared with the clinical diagnoses of 65 attending physicians who had recorded the clinical diagnoses with thorough examinations in real-world practice. In addition, the results obtained by the algorithm for the data of randomly selected batches of 30 patients were compared with those obtained by 44 dermatologists in experimental settings; the dermatologists were only provided with multiple images of each lesion, without clinical information. With regard to the determination of malignancy, the area under the curve (AUC) achieved by the algorithm was 0.863 (95% confidence interval [CI] 0.852-0.875), when unprocessed clinical photographs were used. The sensitivity and specificity of the algorithm at the predefined high-specificity threshold were 62.7% (95% CI 59.9-65.1) and 90.0% (95% CI 89.4-90.6), respectively. Furthermore, the sensitivity and specificity of the first clinical impression of 65 attending physicians were 70.2% and 95.6%, respectively, which were superior to those of the algorithm (McNemar test; p < 0.0001). The positive and negative predictive values of the algorithm were 45.4% (CI 43.7-47.3) and 94.8% (CI 94.4-95.2), respectively, whereas those of the first clinical impression were 68.1% and 96.0%, respectively. In the reader test conducted using images corresponding to batches of 30 patients, the sensitivity and specificity of the algorithm at the predefined threshold were 66.9% (95% CI 57.7-76.0) and 87.4% (95% CI 82.5-92.2), respectively. Furthermore, the sensitivity and specificity derived from the first impression of 44 of the participants were 65.8% (95% CI 55.7-75.9) and 85.7% (95% CI 82.4-88.9), respectively, which are values comparable with those of the algorithm (Wilcoxon signed-rank test; p = 0.607 and 0.097). Limitations of this study include the exclusive use of high-quality clinical photographs taken in hospitals and the lack of ethnic diversity in the study population.ConclusionsOur algorithm could diagnose skin tumors with nearly the same accuracy as a dermatologist when the diagnosis was performed solely with photographs. However, as a result of limited data relevancy, the performance was inferior to that of actual medical examination. To achieve more accurate predictive diagnoses, clinical information should be integrated with imaging information.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.