• Injury · Mar 2023

    Assessment of fracture healing in orthopaedic trauma.

    • Davide Bizzoca, Giovanni Vicenti, Vincenzo Caiaffa, Antonella Abate, Oronzo De Carolis, Massimiliano Carrozzo, Giuseppe Solarino, and Biagio Moretti.
    • School of Medicine, University of Bari Aldo Moro, AOU Consorziale "Policlinico", Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic & Trauma Unit, Bari, Italy.
    • Injury. 2023 Mar 1; 54 Suppl 1: S46S52S46-S52.

    AbstractFracture healing is a complex physiologic process, relying on the crucial interplay between biological and mechanical factors. It is generally assessed using imaging modalities, including conventional radiology, CT, MRI and ultrasound (US), based on the fracture and patient features. Although these techniques are routinely used in orthopaedic clinical practice, unfortunately, they do not provide any information about the biomechanical status of the fracture site. Therefore, in recent years, several non-invasive techniques have been proposed to assess bone healing using ultrasonic wave propagation, changes in electrical properties of bones and callus stiffness measurement. Moreover, different research groups are currently developing smart orthopaedic implants (plates, intramedullary nails and external fixators), able to provide information about the fracture healing process. These devices could significantly improve orthopaedic and trauma clinical practice in the future and, at the same time, reduce patients' exposure to X-rays. This study aims to define the role of traditional imaging techniques and emerging technologies in the assessment of the fracture healing process.Copyright © 2020. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…