-
J. Neurol. Neurosurg. Psychiatr. · Aug 2015
The network topology of aneurysmal subarachnoid haemorrhage.
- George M Ibrahim and R Loch Macdonald.
- Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- J. Neurol. Neurosurg. Psychiatr. 2015 Aug 1;86(8):895-901.
ObjectiveNetwork analysis is an emerging tool for the study of complex systems. In the current report, the cascade of physiological and neurological changes following aneurysmal subarachnoid haemorrhage (SAH) was modelled as a complex system of interacting parameters. Graph theoretical analysis was then applied to identify parameters at critical topological junctions of the network, which may represent the most effective therapeutic targets.MethodsCorrelation matrices were calculated using a combination of Pearson, polyserial and polychoric regressions among 50 variables collected from 120 participants (38 male; mean age 51 years) included in the CONSCIOUS-1 trial. Graph theoretical analysis was performed to identify important topological features within the network formed by the interactions among these variables. Non-parametric resampling was applied to determine thresholds for significance.ResultsSeveral critical network hubs were identified, including the incidence of delayed ischaemic neurological deficit (DIND), anaemia and hypoalbuminaemia/hypoproteinaemia. While not significant hubs, World Federation of Neurosurgical Societies (WFNS) score and use of rescue therapy had widespread connections within the network. Patient sex and history of hypertension also strongly clustered with other variables. A subnetwork (module) was also identified, which was related to neurological outcomes including WFNS score, angiographic vasospasm, DIND, use of rescue therapy and hydrocephalus.InterpretationUsing graph theoretical analysis, we identify critical network topologies following SAH, which may serve as useful therapeutic targets. Importantly, we demonstrate that network analysis is a robust method to model complex interactions following SAH.Trial Registration NumberURL: http://www.clinicaltrials.gov; Identifier: NCT00111085.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.