• Spine J · Apr 2017

    Spinal intraoperative three-dimensional navigation: correlation between clinical and absolute engineering accuracy.

    • Daipayan Guha, Raphael Jakubovic, Shaurya Gupta, Naif M Alotaibi, David Cadotte, Leodante B da Costa, Rajeesh George, Chris Heyn, Peter Howard, Anish Kapadia, Jesse M Klostranec, Nicolas Phan, Gamaliel Tan, Todd G Mainprize, Albert Yee, and Victor X D Yang.
    • Division of Neurosurgery, Department of Surgery, University of Toronto, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Institute of Medical Science, School of Graduate Studies, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Biophotonics and Bioengineering Laboratory, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
    • Spine J. 2017 Apr 1; 17 (4): 489-498.

    Background ContextSpinal intraoperative computer-assisted navigation (CAN) may guide pedicle screw placement. Computer-assisted navigation techniques have been reported to reduce pedicle screw breach rates across all spinal levels. However, definitions of screw breach vary widely across studies, if reported at all. The absolute quantitative error of spinal navigation systems is theoretically a more precise and generalizable metric of navigation accuracy. It has also been computed variably and reported in less than a quarter of clinical studies of CAN-guided pedicle screw accuracy.PurposeThis study aimed to characterize the correlation between clinical pedicle screw accuracy, based on postoperative imaging, and absolute quantitative navigation accuracy.Design/SettingThis is a retrospective review of a prospectively collected cohort.Patient SampleWe recruited 30 patients undergoing first-time posterior cervical-thoracic-lumbar-sacral instrumented fusion±decompression, guided by intraoperative three-dimensional CAN.Outcome MeasuresClinical or radiographic screw accuracy (Heary and 2 mm classifications) and absolute quantitative navigation accuracy (translational and angular error in axial and sagittal planes).MethodsWe reviewed a prospectively collected series of 209 pedicle screws placed with CAN guidance. Each screw was graded clinically by multiple independent raters using the Heary and 2 mm classifications. Clinical grades were dichotomized per convention. The absolute accuracy of each screw was quantified by the translational and angular error in each of the axial and sagittal planes.ResultsAcceptable screw accuracy was achieved for significantly fewer screws based on 2 mm grade versus Heary grade (92.6% vs. 95.1%, p=.036), particularly in the lumbar spine. Inter-rater agreement was good for the Heary classification and moderate for the 2 mm grade, significantly greater among radiologists than surgeon raters. Mean absolute translational-angular accuracies were 1.75 mm-3.13° and 1.20 mm-3.64° in the axial and sagittal planes, respectively. There was no correlation between clinical and absolute navigation accuracy.ConclusionsRadiographic classifications of pedicle screw accuracy vary in sensitivity across spinal levels, as well as in inter-rater reliability. Correlation between clinical screw grade and absolute navigation accuracy is poor, as surgeons appear to compensate for navigation registration error. Future studies of navigation accuracy should report absolute translational and angular errors. Clinical screw grades based on postoperative imaging may be more reliable if performed in multiple by radiologist raters.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…