• Neurosurg Focus · Aug 2018

    Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes.

    • Erik H Middlebrooks, Sanjeet S Grewal, Matthew Stead, Brian N Lundstrom, Gregory A Worrell, and Jamie J Van Gompel.
    • Departments of1Radiology and.
    • Neurosurg Focus. 2018 Aug 1; 45 (2): E7.

    AbstractOBJECTIVE Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a promising therapy for refractory epilepsy. Unfortunately, the variability in outcomes from ANT DBS is not fully understood. In this pilot study, the authors assess potential differences in functional connectivity related to the volume of tissue activated (VTA) in ANT DBS responders and nonresponders as a means for better understanding the mechanism of action and potentially improving DBS targeting. METHODS This retrospective analysis consisted of 6 patients who underwent ANT DBS for refractory epilepsy. Patients were classified as responders (n = 3) if their seizure frequency decreased by at least 50%. The DBS electrodes were localized postoperatively and VTAs were computationally generated based on DBS programming settings. VTAs were used as seed points for resting-state functional MRI connectivity analysis performed using a control dataset. Differences in cortical connectivity to the VTA were assessed between the responder and nonresponder groups. RESULTS The ANT DBS responders showed greater positive connectivity with the default mode network compared to nonresponders, including the posterior cingulate cortex, medial prefrontal cortex, inferior parietal lobule, and precuneus. Interestingly, there was also a consistent anticorrelation with the hippocampus seen in responders that was not present in nonresponders. CONCLUSIONS Based on their pilot study, the authors observed that successful ANT DBS in patients with epilepsy produces increased connectivity in the default mode network, which the authors hypothesize increases the threshold for seizure propagation. Additionally, an inhibitory effect on the hippocampus mediated through increased hippocampal γ-aminobutyric acid (GABA) concentration may contribute to seizure suppression. Future studies are planned to confirm these findings.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.