• Biochem. Biophys. Res. Commun. · Aug 2013

    High glucose induces activation of NF-κB inflammatory signaling through IκBα sumoylation in rat mesangial cells.

    • Wei Huang, Ling Xu, Xueqin Zhou, Chenlin Gao, Maojun Yang, Guo Chen, Jianhua Zhu, Lan Jiang, Huakui Gan, Fang Gou, Hong Feng, Juan Peng, and Yong Xu.
    • Department of Endocrinology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China.
    • Biochem. Biophys. Res. Commun. 2013 Aug 30; 438 (3): 568-74.

    AbstractThe posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6mmol/L), high glucose groups (10, 20, and 30mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p<0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p<0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which could be mostly reversed by adding MG132 (p<0.05). The present results support the hypothesis that high glucose may activate NF-κB inflammatory signaling through IκBα sumoylation and ubiquitination. Copyright © 2013 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.