• Neurobiology of disease · Jan 2015

    Dynamic cortical gray matter volume changes after botulinum toxin in cervical dystonia.

    • Cathérine C S Delnooz, Jaco W Pasman, and Bart P C van de Warrenburg.
    • Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, The Netherlands.
    • Neurobiol. Dis. 2015 Jan 1; 73: 327-33.

    AbstractPrevious electrophysiological and functional imaging studies in focal dystonia have reported on cerebral reorganization after botulinum toxin (BoNT) injections. With the exception of microstructural changes, alterations in gray matter volume after BoNT have not been explored. In this study, we sought to determine whether BoNT influences gray matter volume in a group of cervical dystonia (CD) patients. We analyzed whole brain gray matter volume in a sample of CD patients with VBM analysis. In patients, scans were repeated immediately before and some weeks after BoNT injections; controls were only scanned once. We analyzed 1) BoNT-related gray matter volume changes within patients; 2) gray matter volume differences between patients and controls; and 3) correlations between gray matter volume and disease duration and disease severity. The pre- and post-BoNT treatment analysis revealed an increase of gray matter volume within the right precentral sulcus, at the lateral border of the premotor cortex. In comparison to healthy controls, CD patients had reduced gray matter volume in area 45 functionally corresponding to the left ventral premotor cortex. No gray matter volume increase was found for CD patients in comparison to controls. Gray matter volume of the left supramarginal gyrus and left premotor cortex correlated positively with disease duration, and that of the right inferior parietal lobule correlated negatively with disease severity. We have identified structural, yet dynamic gray matter volume changes in CD. There were specific gray matter volume changes related to BoNT injections, illustrating indirect central consequences of modified peripheral sensory input. As differences were exclusively seen in higher order motor areas relevant to motor planning and spatial cognition, these observations support the hypothesis that deficits in these cognitive processes are crucial in the pathophysiology of CD. Copyright © 2015 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…