-
- Ian R Drennan, Guillaume Geri, Steve Brooks, Keith Couper, Tetsuo Hatanaka, Peter Kudenchuk, Theresa Olasveengen, Jeffrey Pellegrino, Stephen M Schexnayder, Peter Morley, Basic Life Support (BLS), Pediatric Life Support (PLS) and Education, Implementation and Teams (EIT) Taskforces of the International Liaison Committee on Resuscitation (ILCOR), BLS Task Force, Pediatric Task Force, and EIT Task Force.
- Sunnybrook Centre for Prehospital Medicine, 77 Brown's Line, Suite 100, Toronto, ON M8W 3S2, Canada. Electronic address: Ian.Drennan@Sunnybrook.ca.
- Resuscitation. 2021 Feb 1; 159: 85-96.
IntroductionCardiac arrest is a time-sensitive condition requiring urgent intervention. Prompt and accurate recognition of cardiac arrest by emergency medical dispatchers at the time of the emergency call is a critical early step in cardiac arrest management allowing for initiation of dispatcher-assisted bystander CPR and appropriate and timely emergency response. The overall accuracy of dispatchers in recognizing cardiac arrest is not known. It is also not known if there are specific call characteristics that impact the ability to recognize cardiac arrest.MethodsWe performed a systematic review to examine dispatcher recognition of cardiac arrest as well as to identify call characteristics that may affect their ability to recognize cardiac arrest at the time of emergency call. We searched electronic databases for terms related to "emergency medical dispatcher", "cardiac arrest", and "diagnosis", among others, with a focus on studies that allowed for calculating diagnostic test characteristics (e.g. sensitivity and specificity). The review was consistent with Grading of Recommendations, Assessment, Development and Evaluation (GRADE) method for evidence evaluation.ResultsWe screened 2520 article titles, resulting in 47 studies included in this review. There was significant heterogeneity between studies with a high risk of bias in 18 of the 47 which precluded performing meta-analyses. The reported sensitivities for cardiac arrest recognition ranged from 0.46 to 0.98 whereas specificities ranged from 0.32 to 1.00. There were no obvious differences in diagnostic accuracy between different dispatching criteria/algorithms or with the level of education of dispatchers.ConclusionThe sensitivity and specificity of cardiac arrest recognition at the time of emergency call varied across dispatch centres and did not appear to differ by dispatch algorithm/criteria used or education of the dispatcher, although comparisons were hampered by heterogeneity across studies. Future efforts should focus on ways to improve sensitivity of cardiac arrest recognition to optimize patient care and ensure appropriate and timely resource utilization.Copyright © 2020. Published by Elsevier B.V.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.