• J. Neurol. Neurosurg. Psychiatr. · Dec 2015

    Observational Study

    Short-interval observational data to inform clinical trial design in Huntington's disease.

    • Nicola Z Hobbs, Ruth E Farmer, Elin M Rees, James H Cole, Salman Haider, Ian B Malone, Reiner Sprengelmeyer, Hans Johnson, Hans-Peter Mueller, Sigurd D Sussmuth, Raymund A C Roos, Alexandra Durr, Chris Frost, Rachael I Scahill, Bernhard Landwehrmeyer, and Sarah J Tabrizi.
    • Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK.
    • J. Neurol. Neurosurg. Psychiatr. 2015 Dec 1; 86 (12): 1291-8.

    ObjectivesTo evaluate candidate outcomes for disease-modifying trials in Huntington's disease (HD) over 6-month, 9-month and 15-month intervals, across multiple domains. To present guidelines on rapid efficacy readouts for disease-modifying trials.Methods40 controls and 61 patients with HD, recruited from four EU sites, underwent 3 T MRI and standard clinical and cognitive assessments at baseline, 6 and 15 months. Neuroimaging analysis included global and regional change in macrostructure (atrophy and cortical thinning), and microstructure (diffusion metrics). The main outcome was longitudinal effect size (ES) for each outcome. Such ESs can be used to calculate sample-size requirements for clinical trials for hypothesised treatment efficacies.ResultsLongitudinal changes in macrostructural neuroimaging measures such as caudate atrophy and ventricular expansion were significantly larger in HD than controls, giving rise to consistently large ES over the 6-month, 9-month and 15-month intervals. Analogous ESs for cortical metrics were smaller with wide CIs. Microstructural (diffusion) neuroimaging metrics ESs were also typically smaller over the shorter intervals, although caudate diffusivity metrics performed strongly over 9 and 15 months. Clinical and cognitive outcomes exhibited small longitudinal ESs, particularly over 6-month and 9-month intervals, with wide CIs, indicating a lack of precision.ConclusionsTo exploit the potential power of specific neuroimaging measures such as caudate atrophy in disease-modifying trials, we propose their use as (1) initial short-term readouts in early phase/proof-of-concept studies over 6 or 9 months, and (2) secondary end points in efficacy studies over longer periods such as 15 months.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.