-
- Yusuke Hori, Akinobu Suzuki, Kazunori Hayashi, Shoichiro Ohyama, Akito Yabu, Mohammad Hasib Maruf, Hasibullah Habibi, Hamidullah Salimi, and Hiroaki Nakamura.
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
- Spine. 2021 May 1; 46 (9): E520-E527.
Study DesignExperimental animal study.ObjectiveThe aim of this study was to clarify chronological effects of mechanical stress on ligamentum flavum (LF) using a long-term fusion rabbit model.Summary Of Background DataLF hypertrophy is a major pathology of lumbar spinal stenosis (LSS), but its mechanism remains unclear. We previously demonstrated mechanical-stress-induced LF hypertrophy with a rabbit model. However, we only investigated LFs at a single time point in the short-term; the effects of long-term mechanical stress have not been elucidated.MethodsEighteen-week-old male New Zealand White rabbits were randomly divided into two groups: the mechanical stress group underwent L2-3 and L4-5 posterolateral fusion and resection of the L3-4 supraspinal muscle, whereas the control group underwent only surgical exposure. Rabbits were sacrificed 16 and 52 weeks after the procedure. Axial specimens of LFs at L3-4 were evaluated histologically. Immunohistochemistry for alpha-smooth muscle actin (α-SMA) was performed to assess the numbers of vessels and myofibroblasts.ResultsIn the mechanical stress group, LFs at the L3-4 level exhibited hypertrophy with elastic fiber disruption and cartilage matrix production at 16 and 52 weeks. A trend test indicated that mechanical stress induced LF hypertrophy, elastic fiber disruption, and cartilage matrix production in a time-dependent manner, with the lowest levels before treatment and the highest at 52 weeks. Immunostaining for α-SMA showed similar numbers of vessels in both groups, whereas the percentage of myofibroblasts was significantly larger at 16 and 52 weeks in the mechanical stress group than in the control group.ConclusionWe demonstrated that long-term mechanical stress caused LF hypertrophy with progressive elastic fiber disruption and cartilage matrix production accompanied by enhanced myofibroblasts. In addition, the reported rabbit model could be extended to elucidate the mechanism of LF hypertrophy and to develop new therapeutic strategies for LSS by preventing LF hypertrophy.Level of Evidence: SSSSS.Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.