• Plos One · Jan 2015

    Combination of low calcium with Y-27632 rock inhibitor increases the proliferative capacity, expansion potential and lifespan of primary human keratinocytes while retaining their capacity to differentiate into stratified epidermis in a 3D skin model.

    • Xanthe L Strudwick, Debbie L Lang, Louise E Smith, and Allison J Cowin.
    • Regenerative Medicine, Mawson Institute, University of South Australia, Mawson Lakes, Australia.
    • Plos One. 2015 Jan 1; 10 (4): e0123651.

    AbstractHuman keratinocytes are difficult to isolate and have a limited lifespan. Traditionally, immortalised keratinocyte cell lines are used in vitro due to their ability to bypass senescence and survive indefinitely. However these cells do not fully retain their ability to differentiate in vitro and they are unable to form a normal stratum corneum in organotypic culture. Here we aimed to generate a pool of phenotypically similar keratinocytes from human donors that could be used in monolayer culture, without a fibroblast feeder layer, and in 3D human skin equivalent models. Primary human neonatal epidermal keratinocytes (HEKn) were cultured in low calcium, (0.07 mM) media, +/-10 μM Y-27632 ROCK inhibitor (HEKn-CaY). mRNA and protein was extracted and expression of differentiation markers Keratin 14 (K14), Keratin 10 (K10) and Involucrin (Inv) assessed by qRT-PCR and Western blotting. The differentiation potential of the HEKn-CaY cultures was assessed by increasing calcium levels and removing the Y-27632 for 72 hrs prior to assessment of K14, K10 and Inv. The ability of the HEKn-CaY, to form a stratified epithelium was assessed using a human skin equivalent (HSE) model in the absence of Y-27632. Increased proliferative capacity, expansion potential and lifespan of HEKn was observed with the combination of low calcium and 10 μM ROCK inhibitor Y-27632. The removal of Y-27632 and the addition of high calcium to induce differentiation allowed the cells to behave as primary keratinocytes even after extended serial passaging. Prolonged lifespan HEK-CaYs were capable of forming an organised stratified epidermis in 3D HSE cultures, demonstrating their ability to fully stratify and retain their original, primary characteristics. In conclusion, the use of 0.07 mM Calcium and 10 μM Y-27632 in HEKn monocultures provides the opportunity to culture primary human keratinocytes without a cell feeder layer for extended periods of culture whilst retaining their ability to differentiate and form a stratified epithelium.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.