• Am. J. Chin. Med. · Jan 2017

    Hispolon Suppresses LPS- or LTA-Induced iNOS/NO Production and Apoptosis in BV-2 Microglial Cells.

    • Ming-Shun Wu, Chih-Chiang Chien, Kur-Ta Cheng, Gottumukkala V Subbaraju, and Yen-Chou Chen.
    • * Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
    • Am. J. Chin. Med. 2017 Jan 1; 45 (8): 1649-1666.

    AbstractHispolon (HIS) is an active polyphenol compound derived from Phellinus linteus (Berkeley & Curtis), and our previous study showed that HIS effectively inhibited inflammatory responses in macrophages [Yang, L.Y., S.C. Shen, K.T. Cheng, G.V. Subbaraju, C.C. Chien and Y.C. Chen. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages. J. Ethnopharmacol. 156: 61-72, 2014]; however, its effect on neuronal inflammation is still undefined. In this study, HIS concentration- and time-dependently inhibited lipopolysaccharide (LPS)- and lipoteichoic acid (LTA)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production with increased heme oxygenase (HO)-1 proteins in BV-2 microglial cells. Accordingly, HIS protected BV-2 cells from LPS- or LTA-induced apoptosis, characterized by decreased DNA ladder formation, and caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage in BV-2 cells. Similarly, the NOS inhibitor, N-nitro-L-arginine methyl ester (NAME), inhibited LPS- or LTA-induced apoptosis of BV-2 cells, but neither NAME nor HIS showed any inhibition of NO production or cell death induced by the NO donor, sodium nitroprusside (SNP), indicating the involvement of NO in the inflammatory apoptosis of microglial cells. Activation of c-Jun N-terminal kinase (JNK) and nuclear factor (NF)-[Formula: see text]B contributed to LPS- or LTA-induced iNOS/NO production and apoptosis of BV-2 cells, and that was suppressed by HIS. Additionally, HIS possesses activity to induce HO-1 protein expression via activation of extracellular signal-regulated kinase (ERK) in BV-2 cells, and application of the HO inhibitor, tin protoporphyrin (SnPP), or knockdown of HO-1 protein by HO-1 small interfering (si)RNA significantly reversed HIS inhibition of NO production and cell death in BV-2 cells stimulated by LPS. Results of an analysis of the effects of HIS and two structurally related chemicals, i.e. dehydroxy-HIS (D-HIS) and HIS-methyl ester (HIS-ME), showed that HIS expressed the most potent inhibitory effects on iNOS/NO production, JNK activation, and apoptosis in BV-2 microglial cells activated by LPS with increased HO-1 protein expression. Overall these results suggested that HIS possesses inhibitory activity against LPS- or LTA-induced inflammatory responses including iNOS/NO production and apoptosis in BV-2 microglial cells and that the mechanisms involve upregulation of the HO-1 protein and downregulation of JNK/NF-[Formula: see text]B activation. A critical role of hydroxyl at position C3 in the anti-inflammatory actions of HIS against activated BV-2 microglial cells was suggested.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.