• MMWR supplements · Sep 2004

    Benchmark data and power calculations for evaluating disease outbreak detection methods.

    • Martin Kulldorff, Z Zhang, J Hartman, R Heffernan, L Huang, and F Mostashari.
    • Department of Ambulatory Care and Prevention, Harvard Medical School and Harvard Pilgrim Health Care, 133 Brookline Avenue, 6th Floor, Boston, MA 02215, USA. martin_kulldorff@hms.harvard.edu
    • MMWR Suppl. 2004 Sep 24; 53: 144-51.

    IntroductionEarly detection of disease outbreaks enables public health officials to implement immediate disease control and prevention measures. Computer-based syndromic surveillance systems are being implemented to complement reporting by physicians and other health-care professionals to improve the timeliness of disease-outbreak detection. Space-time disease-surveillance methods have been proposed as a supplement to purely temporal statistical methods for outbreak detection to detect localized outbreaks before they spread to larger regions.ObjectiveThe aims of this study were twofold: 1) to design and make available benchmark data sets for evaluating the statistical power of space-time early detection methods and 2) to evaluate the power of the prospective purely temporal and space-time scan statistics by applying them to the benchmark data sets at different parameter settings.MethodsSimulated data sets based on the geography and population of New York City were created, including effects of outbreaks of varying size and location. Data sets with no outbreak effects were also created. Scan statistics were then run on these data sets, and the resulting power performances were analyzed and compared.ResultsThe prospective space-time scan statistic performs well for a spectrum of outbreak models. By comparison, the prospective purely temporal scan statistic has higher power for detecting citywide outbreaks but lower power for detecting geographically localized outbreaks.ConclusionsThe benchmark data sets created for this study can be used successfully for formal statistical power evaluations and comparisons. If an anomaly caused by an outbreak is local, purely temporal surveillance methods might be unable to detect it, in which case space-time methods would be necessary for early detection.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…