-
J. Thorac. Cardiovasc. Surg. · Feb 1997
Mitigation of injury in canine lung grafts by exogenous surfactant therapy.
- R J Novick, A A Gilpin, K E Gehman, I S Ali, R A Veldhuizen, J Duplan, L Denning, F Possmayer, D Bjarneson, and J F Lewis.
- Transplantation-Immunobiology Group, Robarts Research Institute, London, Ontario, Canada.
- J. Thorac. Cardiovasc. Surg. 1997 Feb 1; 113 (2): 342-53.
BackgroundExogenous surfactant therapy of lung donors improves the preservation of normal canine grafts. The current study was designed to determine whether exogenous surfactant can mitigate the damage in lung grafts induced by mechanical ventilation before procurement.Methods And ResultsFive donor dogs were subjected to 8 hours of mechanical ventilation (tidal volume 45 ml/kg). This produced a significant decrease in oxygen tension (p = 0.007) and significant increases in bronchoscopic lavage fluid neutrophil count (p = 0.05), protein concentration (p = 0.002), and the ratio of poorly functioning small surfactant aggregates to superiorly functioning large aggregates (p = 0.02). Five other animals given instilled bovine lipid extract surfactant and undergoing mechanical ventilation in the same manner demonstrated no significant change in oxygen tension values, lavage fluid protein concentration, or the ratio of small to large aggregates. All 10 lung grafts were then stored for 17 hours at 4 degrees C. Left lungs were transplanted and reperfused for 6 hours. After 6 hours of reperfusion the ratio of oxygen tension to inspired oxygen fraction was 307 +/- 63 mm Hg in lung grafts administered surfactant versus 73 +/- 14 mm Hg in untreated grafts (p = 0.007). Furthermore, peak inspired pressure was significantly (p < 0.05) lower in treated animals from 90 to 360 minutes of reperfusion. Analysis of lavage fluid of transplanted grafts after reperfusion revealed small to large aggregate ratios of 0.17 +/- 0.04 and 0.77 +/- 0.17 in treated versus untreated grafts, respectively (p = 0.009).ConclusionsInstillation of surfactant before mechanical ventilation reduced protein leak, maintained a low surfactant small to large aggregate ratio, and prevented a decrease of oxygen tension in donor animals. After transplantation, surfactant-treated grafts had superior oxygen tension values and a higher proportion of superiorly functioning surfactant aggregate forms in the air space than untreated grafts. Exogenous surfactant therapy can protect lung grafts from ventilation-induced injury and may offer a promising means to expand the donor pool.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.