• Hippokratia · Jul 2012

    Prevalence of thrombophilic mutations in patients with unprovoked thromboembolic disease. A comparative analysis regarding arterial and venous disease.

    • E Mandala, C Lafaras, C Tsioni, M Speletas, A Papageorgiou, D Kleta, T Dardavessis, and G Ilonidis.
    • Fourth Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.
    • Hippokratia. 2012 Jul 1; 16 (3): 250-5.

    BackgroundThromboembolic disease (TED) represents one of the main reasons of morbitity and mortality in Western World. Venous and arterial thrombotic disorders have long been viewed as separate pathophysiological entities. However, in recent times the separate nature of arterial and venous thrombotic events has been challenged. Although inherited thrombophilia's predominant clinical manifestation is venous thrombosis, its contribution to arterial thrombosis remains controversial. Purpose  of  the  study  was  to  evaluate  the  prevalence  of  the  most common  thrombophilic  mutations, FV Leiden G1691A-FVL and FII G20210A-PTM and to assess  the  differences between venous, arterial and mixed thrombotic events. Testing  for polymorphism MTHFR C677T and  antithrombin,  protein  C  and  protein  S was also performed. Correlations with  dyslipidemia, smoking, obesity, homocysteine and antiphospholipid antibodies were made.Methods515 patients with unprovoked TED, 263 males, median age 44 years, were studied. Patients were divided into three groups: 258 with venous thrombosis (group A), 239 with arterial (group B) and 18 with mixed episodes (group C). All patients were interviewed regarding family history of TED, origin, smoking and dyslipidemia. Body mass index (BMI) had been calculated. Molecular assessment of the FVL, PTM and MTHFR C677T was performed. Antithrombin, protein C, protein S, APCR, homocysteine, antiphospholipid antibodies and lipid profile were also measured.ResultsThe population studied was homogenous among three groups as regards age (p=0.943), lipid profile (p=0.271), BMI (p=0.506), homocysteine (p=0.177), antiphospholipid antibodies (p=0.576), and positive family history (p=0.099). There was no difference in the prevalence of FVL between venous and arterial disease (p=0.440). Significant correlation of PTM with venous TED was found (p=0.001). The number of positive and negative for MTHFR presented statistically significant difference with a support in arterial disease (p=0.05). Moreover, a 2-fold increase in the risk of venous thrombosis in FVL positive patients (odds ratio: 2.153) and a positive correlation of homocysteine levels with MTHFR C677T (p<0.001) was found.ConclusionsCorrelation of PTM with venous thrombosis was established. Analysis showed no difference in prevalence of FVL between venous and arterial thrombosis, indicating that FVL might be a predisposing factor for arterial disease. A significant increase in MTHFR C677T prevalence in arterial disease was found. In conclusion, young patients with unprovoked arterial disease should undergo evaluation for thrombophilic genes. Identification of these mutations is important in the overall assessment and management of patients at high risk. Findings will influence the decisions of stratified approaches for antithrombotic therapy either primary or secondary thromboprophylaxis, the duration of therapy, the potential for avoiding clinical thrombosis by risk factor modification and the genetic counselling of family members. However, further studies are needed to clarify the nature of the association regarding venous and arterial thrombotic events.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.