-
- Rebecca C Richmond, Nicholas J Timpson, Janine F Felix, Tom Palmer, Romy Gaillard, George McMahon, Davey SmithGeorgeG0000-0002-1407-8314MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom., Vincent W Jaddoe, and Debbie A Lawlor.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.
- PLoS Med. 2017 Jan 1; 14 (1): e1002221e1002221.
BackgroundIt has been suggested that greater maternal adiposity during pregnancy affects lifelong risk of offspring fatness via intrauterine mechanisms. Our aim was to use Mendelian randomisation (MR) to investigate the causal effect of intrauterine exposure to greater maternal body mass index (BMI) on offspring BMI and fat mass from childhood to early adulthood.Methods And FindingsWe used maternal genetic variants as instrumental variables (IVs) to test the causal effect of maternal BMI in pregnancy on offspring fatness (BMI and dual-energy X-ray absorptiometry [DXA] determined fat mass index [FMI]) in a MR approach. This was investigated, with repeat measurements, from ages 7 to 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 2,521 to 3,720 for different ages). We then sought to replicate findings with results for BMI at age 6 in Generation R (n = 2,337 for replication sample; n = 6,057 for total pooled sample). In confounder-adjusted multivariable regression in ALSPAC, a 1 standard deviation (SD, equivalent of 3.7 kg/m2) increase in maternal BMI was associated with a 0.25 SD (95% CI 0.21-0.29) increase in offspring BMI at age 7, with similar results at later ages and when FMI was used as the outcome. A weighted genetic risk score was generated from 32 genetic variants robustly associated with BMI (minimum F-statistic = 45 in ALSPAC). The MR results using this genetic risk score as an IV in ALSPAC were close to the null at all ages (e.g., 0.04 SD (95% CI -0.21-0.30) at age 7 and 0.03 SD (95% CI -0.26-0.32) at age 18 per SD increase in maternal BMI), which was similar when a 97 variant generic risk score was used in ALSPAC. When findings from age 7 in ALSPAC were meta-analysed with those from age 6 in Generation R, the pooled confounder-adjusted multivariable regression association was 0.22 SD (95% CI 0.19-0.25) per SD increase in maternal BMI and the pooled MR effect (pooling the 97 variant score results from ALSPAC with the 32 variant score results from Generation R) was 0.05 SD (95%CI -0.11-0.21) per SD increase in maternal BMI (p-value for difference between the two results = 0.05). A number of sensitivity analyses exploring violation of the MR results supported our main findings. However, power was limited for some of the sensitivity tests and further studies with relevant data on maternal, offspring, and paternal genotype are required to obtain more precise (and unbiased) causal estimates.ConclusionsOur findings provide little evidence to support a strong causal intrauterine effect of incrementally greater maternal BMI resulting in greater offspring adiposity.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.