• PLoS medicine · Jun 2017

    Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study.

    • Alastair J Noyce, Demis A Kia, Gibran Hemani, Aude Nicolas, T Ryan Price, Eduardo De Pablo-Fernandez, Philip C Haycock, Patrick A Lewis, Thomas Foltynie, Davey SmithGeorgeG0000-0002-1407-8314MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom., International Parkinson Disease Genomics Consortium, Anette Schrag, Andrew J Lees, John Hardy, Andrew Singleton, Mike A Nalls, Neil Pearce, Debbie A Lawlor, and Nicholas W Wood.
    • Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom.
    • PLoS Med. 2017 Jun 1; 14 (6): e1002314e1002314.

    BackgroundBoth positive and negative associations between higher body mass index (BMI) and Parkinson disease (PD) have been reported in observational studies, but it has been difficult to establish causality because of the possibility of residual confounding or reverse causation. To our knowledge, Mendelian randomisation (MR)-the use of genetic instrumental variables (IVs) to explore causal effects-has not previously been used to test the effect of BMI on PD.Methods And FindingsTwo-sample MR was undertaken using genome-wide association (GWA) study data. The associations between the genetic instruments and BMI were obtained from the GIANT consortium and consisted of the per-allele difference in mean BMI for 77 independent variants that reached genome-wide significance. The per-allele difference in log-odds of PD for each of these variants was estimated from a recent meta-analysis, which included 13,708 cases of PD and 95,282 controls. The inverse-variance weighted method was used to estimate a pooled odds ratio (OR) for the effect of a 5-kg/m2 higher BMI on PD. Evidence of directional pleiotropy averaged across all variants was sought using MR-Egger regression. Frailty simulations were used to assess whether causal associations were affected by mortality selection. A combined genetic IV expected to confer a lifetime exposure of 5-kg/m2 higher BMI was associated with a lower risk of PD (OR 0.82, 95% CI 0.69-0.98). MR-Egger regression gave similar results, suggesting that directional pleiotropy was unlikely to be biasing the result (intercept 0.002; p = 0.654). However, the apparent protective influence of higher BMI could be at least partially induced by survival bias in the PD GWA study, as demonstrated by frailty simulations. Other important limitations of this application of MR include the inability to analyse non-linear associations, to undertake subgroup analyses, and to gain mechanistic insights.ConclusionsIn this large study using two-sample MR, we found that variants known to influence BMI had effects on PD in a manner consistent with higher BMI leading to lower risk of PD. The mechanism underlying this apparent protective effect warrants further study.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.