• PLoS medicine · Apr 2018

    Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children.

    • Ezio Bonifacio, Andreas Beyerlein, Markus Hippich, Christiane Winkler, Kendra Vehik, Michael N Weedon, Michael Laimighofer, Andrew T Hattersley, Jan Krumsiek, Brigitte I Frohnert, Andrea K Steck, William A Hagopian, Jeffrey P Krischer, Åke Lernmark, Marian J Rewers, Jin-Xiong She, Jorma Toppari, Beena Akolkar, Richard A Oram, Stephen S Rich, Anette-G Ziegler, and TEDDY Study Group.
    • DFG-Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
    • PLoS Med. 2018 Apr 1; 15 (4): e1002548e1002548.

    BackgroundAround 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes.Methods And FindingsThe Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%-6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%-4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%-13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%-4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%-9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%-3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%-54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%-60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case-control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations.ConclusionsA type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…