-
- Densel Arac, Mehmet Fatih Erdi, Fatih Keskin, Mehmet Kenan, Gokhan Cuce, Fatma H Y Aydemir, Onder Guney, and Yalçın Kocaogullar.
- Department of Neurosurgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey. Electronic address: denselarac@hotmail.com.
- World Neurosurg. 2021 Mar 1; 147: e225-e233.
ObjectiveSpinal cord injury (SCI) disrupts nerve axons with devastating neurological consequences, but there is no effective clinical treatment. The secondary damage mechanism is a mainstay process, and it starts within a few minutes after trauma. We aim to investigate the neuroprotective effects of milrinone on the SCI model.Materials And MethodsA total of 36 Wistar albino rats, each weighing 300-400 g, were randomly split into 4 groups that received different treatments: in group 1 (sham) (n = 9) control, only a laminectomy was performed; in group 2 (SCI) (n = 9), SCI was imitated after laminectomy; in group 3 (SCI + saline) (n = 9), physiological saline solution was injected intraperitoneally immediately after the SCI; and in group 4 (SCI + milrinone), milrinone was administered intraperitoneally on lateral decubitus position immediately after the SCI. Spinal cord contusion was established by the weight-drop technique after laminectomy. Neurological examination scores were recorded, and rats were killed 72 hours later. Serum and spinal cord tissue glutathione peroxidase, total antioxidant status, total oxidant status, 8-hydroxiguanosine, interleukin-6 and interleukin-10 levels, histopathological spinal cord damage score, and apoptotic index were examined and compared between groups.ResultsNeurological examination scores were significantly better in the milrinone-treated group compared with groups 2 and 3. SCI significantly increased serum and spinal cord tissue glutathione peroxidase, total oxidant status, 8-hydroxiguanosine, and interleukin-6 levels that were successfully reduced with milrinone treatment. Interleukin-10 and total antioxidant status levels decreased as a result of SCI increased with milrinone treatment. Increased histopathological spinal cord damage score and apoptotic index in groups 2 and 3 significantly decreased in group 4.ConclusionsMilrinone could reduce apoptosis and increase anti-inflammatory and antioxidative mediators, thus playing a protective role in secondary nerve injury after SCI in rats.Copyright © 2020 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.