• JAMA network open · Jul 2019

    Machine Learning Approach to Inpatient Violence Risk Assessment Using Routinely Collected Clinical Notes in Electronic Health Records.

    • Vincent Menger, Marco Spruit, Roel van Est, Eline Nap, and Floor Scheepers.
    • Department of Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands.
    • JAMA Netw Open. 2019 Jul 3; 2 (7): e196709.

    ImportanceInpatient violence remains a significant problem despite existing risk assessment methods. The lack of robustness and the high degree of effort needed to use current methods might be mitigated by using routinely registered clinical notes.ObjectiveTo develop and validate a multivariable prediction model for assessing inpatient violence risk based on machine learning techniques applied to clinical notes written in patients' electronic health records.Design, Setting, And ParticipantsThis prognostic study used retrospective clinical notes registered in electronic health records during admission at 2 independent psychiatric health care institutions in the Netherlands. No exclusion criteria for individual patients were defined. At site 1, all adults admitted between January 2013 and August 2018 were included, and at site 2 all adults admitted to general psychiatric wards between June 2016 and August 2018 were included. Data were analyzed between September 2018 and February 2019.Main Outcomes And MeasuresPredictive validity and generalizability of prognostic models measured using area under the curve (AUC).ResultsClinical notes recorded during a total of 3189 admissions of 2209 unique individuals at site 1 (mean [SD] age, 34.0 [16.6] years; 1536 [48.2%] male) and 3253 admissions of 1919 unique individuals at site 2 (mean [SD] age, 45.9 [16.6] years; 2097 [64.5%] male) were analyzed. Violent outcome was determined using the Staff Observation Aggression Scale-Revised. Nested cross-validation was used to train and evaluate models that assess violence risk during the first 4 weeks of admission based on clinical notes available after 24 hours. The predictive validity of models was measured at site 1 (AUC = 0.797; 95% CI, 0.771-0.822) and site 2 (AUC = 0.764; 95% CI, 0.732-0.797). The validation of pretrained models in the other site resulted in AUCs of 0.722 (95% CI, 0.690-0.753) at site 1 and 0.643 (95% CI, 0.610-0.675) at site 2; the difference in AUCs between the internally trained model and the model trained on other-site data was significant at site 1 (AUC difference = 0.075; 95% CI, 0.045-0.105; P < .001) and site 2 (AUC difference = 0.121; 95% CI, 0.085-0.156; P < .001).Conclusions And RelevanceInternally validated predictions resulted in AUC values with good predictive validity, suggesting that automatic violence risk assessment using routinely registered clinical notes is possible. The validation of trained models using data from other sites corroborates previous findings that violence risk assessment generalizes modestly to different populations.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…