• Neurosurgery · Sep 2015

    What You See Is What You Get: Lead Location Within Deep Brain Structures Is Accurately Depicted by Stereotactic Magnetic Resonance Imaging.

    • Jonathan A Hyam, Harith Akram, Thomas Foltynie, Patricia Limousin, Marwan Hariz, and Ludvic Zrinzo.
    • *Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom; ‡Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom; §Department of Clinical Neuroscience, Umeå University, Umeå, Sweden.
    • Neurosurgery. 2015 Sep 1;11 Suppl 3:412-9; discussion 419.

    BackgroundMagnetic resonance imaging (MRI)-verified deep brain stimulation relies on the correct interpretation of stereotactic imaging documenting lead location in relation to visible anatomic target. However, it has been suggested that local signal distortion from the lead itself renders its depiction on MRI unreliable.ObjectiveTo compare lead location on stereotactic MRI with subsequent location of its brain track after removal.MethodsPatients underwent deep brain stimulation with the use of MRI-guided and MRI-verified Leksell frame approach. Infection or suboptimal efficacy required lead removal and subsequent reimplantation by using the same technique. Postimplantation stereotactic MR images were analyzed. Lateral (x) and anteroposterior (y) distances from midcommissural point to center of the lead hypointensity were recorded at the anterior commissure-posterior commissure plane (pallidal electrode) or z = -4 (subthalamic electrode). Stereotactic MRI before the second procedure, x and y distances from the center of the visible lead track hypointensity to midcommissural point were independently recorded. Vectorial distance from center of the lead hypointensity to the center of its track was calculated.ResultsSixteen electrode tracks were studied in 10 patients. Mean differences between lead artifact location and lead track location were: x coordinate 0.4 mm ± 0.2; y coordinate 0.6 mm ± 0.3. Mean vectorial distance was 0.7 mm ± 0.2.ConclusionStereotactic distance between lead location and subsequent brain track location on MRI was small. The mean discrepancy was approximately half the deep brain stimulation lead width. This suggests that lead hypointensity seen on postimplantation MRI is indeed an accurate representation of its real location within deep brain structures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.