• Intensive Care Med Exp · Dec 2017

    Optimal esophageal balloon volume for accurate estimation of pleural pressure at end-expiration and end-inspiration: an in vitro bench experiment.

    • Yan-Lin Yang, Xuan He, Xiu-Mei Sun, Han Chen, Zhong-Hua Shi, Ming Xu, Guang-Qiang Chen, and Jian-Xin Zhou.
    • Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, No 6, Tiantan Xili, Dongcheng District, Beijing, 100050, China.
    • Intensive Care Med Exp. 2017 Dec 1; 5 (1): 35.

    BackgroundEsophageal pressure, used as a surrogate for pleural pressure, is commonly measured by air-filled balloon, and the accuracy of measurement depends on the proper balloon volume. It has been found that larger filling volume is required at higher surrounding pressure. In the present study, we determined the balloon pressure-volume relationship in a bench model simulating the pleural cavity during controlled ventilation. The aim was to confirm whether an optimal balloon volume range existed that could provide accurate measurement at both end-expiration and end-inspiration.MethodsWe investigated three esophageal balloons with different dimensions and materials: Cooper, SmartCath-G, and Microtek catheters. The balloon was introduced into a glass chamber simulating the pleural cavity and volume-controlled ventilation was initiated. The ventilator was set to obtain respective chamber pressures of 5 and 20 cmH2O during end-expiratory and end-inspiratory occlusion. Balloon was progressively inflated, and balloon pressure and chamber pressure were measured. Balloon transmural pressure was defined as the difference between balloon and chamber pressure. The balloon pressure-volume curve was fitted by sigmoid regression, and the minimal and maximal balloon volume accurately reflecting the surrounding pressure was estimated using the lower and upper inflection point of the fitted sigmoid curve. Balloon volumes at end-expiratory and end-inspiratory occlusion were explored, and the balloon volume range that provided accurate measurement at both phases was defined as the optimal filling volume.ResultsSigmoid regression of the balloon pressure-volume curve was justified by the dimensionless variable fitting and residual distribution analysis. All balloon transmural pressures were within ±1.0 cmH2O at the minimal and maximal balloon volumes. The minimal and maximal balloon volumes during end-inspiratory occlusion were significantly larger than those during end-expiratory occlusion, except for the minimal volume in Cooper catheter. Mean (±standard deviation) of optimal filling volume both suitable for end-expiratory and end-inspiratory measurement ranged 0.7 ± 0.0 to 1.7 ± 0.2 ml in Cooper, 1.9 ± 0.2 to 3.6 ± 0.3 ml in SmartCath-G, and 2.2 ± 0.2 to 4.6 ± 0.1 ml in Microtek catheter.ConclusionsIn each of the tested balloon, an optimal filling volume range was found that provided accurate measurement during both end-expiratory and end-inspiratory occlusion.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.