-
- Rachel Stemerman, Thomas Bunning, Joseph Grover, Rebecca Kitzmiller, and Mehul D Patel.
- Received November 19, 2020 from Carolina Health Informatics Program, University of North Carolina, Chapel Hill, North Carolina (RS, RK); Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina (TB); Department of Emergency Medicine, University of North Carolina, Chapel Hill, North Carolina (JG, MDP) Revision received; accepted for publication December 1, 2020.
- Prehosp Emerg Care. 2021 Jan 25: 1141-14.
AbstractObjective: Emergency medical services (EMS) provide critical interventions for patients with acute illness and injury and are important in implementing prehospital emergency care research. Retrospective, manual patient record review, the current reference-standard for identifying patient cohorts, requires significant time and financial investment. We developed automated classification models to identify eligible patients for prehospital clinical trials using EMS clinical notes and compared model performance to manual review.Methods: With eligibility criteria for an ongoing prehospital study of chest pain patients, we used EMS clinical notes (n = 1208) to manually classify patients as eligible, ineligible, and indeterminate. We randomly split these same records into training and test sets to develop and evaluate machine-learning (ML) algorithms using natural language processing (NLP) for feature (variable) selection. We compared models to the manual classification to calculate sensitivity, specificity, accuracy, positive predictive value, and F1 measure. We measured clinical expert time to perform review for manual and automated methods.Results: ML models' sensitivity, specificity, accuracy, positive predictive value, and F1 measure ranged from 0.93 to 0.98. Compared to manual classification (N = 363 records), the automated method excluded 90.9% of records as ineligible and leaving only 33 records for manual review.Conclusions: Our ML derived approach demonstrates the feasibility of developing a high-performing, automated classification system using EMS clinical notes to streamline the identification of a specific cardiac patient cohort. This efficient approach can be leveraged to facilitate prehospital patient-trial matching, patient phenotyping (i.e. influenza-like illness), and create prehospital patient registries.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.