• Medicine · Dec 2020

    Screening and identification of key genes between liver hepatocellular carcinoma (LIHC) and cholangiocarcinoma (CHOL) by bioinformatic analysis.

    • Xindan Kang, Li Bai, Xiaoguang Qi, and Jing Wang.
    • Department of Oncology, The First Medical Center of Chinese People's Liberation Army General Hospital.
    • Medicine (Baltimore). 2020 Dec 11; 99 (50): e23563e23563.

    BackgroundLiver hepatocellular carcinoma (LIHC) and cholangiocarcinoma (CHOL) are common primary liver cancers worldwide. Liver stem cells have biopotential to differentiate into either hepatocytes and cholangiocytes, the phenotypic overlap between LIHC and CHOL has been acceptable as a continuous liver cancer spectrum. However, few studies directly investigated the underlying molecular mechanisms between LIHC and CHOL.MethodTo identify the candidate genes between LIHC and CHOL, three data series including GSE31370, GSE15765 and GSE40367 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using STRING and Cytoscape.ResultsA total of 171 DEGs were identified, consisting of 49 downregulated genes and 122 upregulated genes. Compared with CHOL, the enriched functions of the DEGs mainly included steroid metabolic process, acute inflammatory response, coagulation. Meanwhile, the pathway of KEGG enrichment analyses showed that the upregulated gene(s) were mainly enriched complement and coagulation cascades, cholesterol metabolism and PPAR signaling pathway, while the downregulated gene(s) were mainly enriched in ECM-receptor interaction, focal adhesion, bile secretion. Similarly, the most significant module was identified and biological process analysis revealed that these genes were mainly enriched in regulation of blood coagulation, acute inflammatory response, complement and coagulation cascades. Finally, two (ITIH2 and APOA2) of 10 hub genes had been screened out to help differential diagnosis.Conclusion171 DEGs and two (ITIH2 and APOA2) of 10 hub genes identified in the present study help us understand the different molecular mechanisms between LIHC and CHOL, and provide candidate targets for differential diagnosis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.