• Spine · Jul 2015

    Mechanical Contribution of the Rib Cage in the Human Cadaveric Thoracic Spine.

    • Erin M Mannen, John T Anderson, Paul M Arnold, and Elizabeth A Friis.
    • *Department of Mechanical Engineering, The University of Kansas, Lawrence, KS †Department of Orthopaedic Surgery, Children's Mercy Hospital and Clinics of Kansas City, Kansas City, MO; and ‡Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS.
    • Spine. 2015 Jul 1; 40 (13): E760-6.

    Study DesignAn in vitro biomechanical human cadaveric study of T1-T12 thoracic specimens was performed with 4 conditions (with and without rib cage, instrumented and uninstrumented) in flexion-extension, lateral bending, and axial rotation.ObjectiveThe objective was to understand the influence of the rib cage on motion and stiffness parameters of the human cadaveric thoracic spine. Hypotheses tested for overall motion in all modes of bending for both uninstrumented and instrumented specimens were (i) in-plane range of motion and neutral and elastic zones will be greater without the rib cage, (ii) neutral and elastic zone stiffness values will be different for specimens without the rib cage, and (iii) out-of-plane rotations will be different for specimens without the rib cage.Summary Of Background DataThe rib cage is presumed to provide significant stability to the thoracic spine, but no studies have been conducted to determine the influence of the rib cage in both uninstrumented and instrumented conditions in the full thoracic human cadaveric specimens.MethodsSeven human cadaveric spine specimens (T1-T12) with 4 conditions (with and without rib cage, instrumented and uninstrumented) were subjected to 5 N·m pure moments in flexion-extension, lateral bending, and axial rotation. Range of motion, neutral and elastic zones, neutral and elastic zone stiffness values, and out-of-plane rotations were calculated for the overall specimen.ResultsIn-plane range of motion was significantly higher without a rib cage for most modes of bending. Out-of-plane motions were also influenced by the rib cage. Neutral zone stiffness was significantly higher with a rib cage present.ConclusionTesting without a rib cage yields different motion and stiffness measures, directly impacting the translation of research results to clinical interpretation. Researchers should consider these differences when evaluating the mechanical impact of surgical procedures or instrumentation in cadaveric or computational models.Level Of Evidence5.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…